0000000000495157
AUTHOR
Chiara Masnata
COMBINED USE OF INNOVATIVE PASSIVE CONTROL DEVICES AND CONVENTIONAL BASE ISOLATION STRATEGIES
This manuscript contains the main part of my research performed in the last three years at the Department of Engineering, University of Palermo, at the Department of Basic Sciences in Engineering Sciences (Unit of Applied Mechanics), University of Innsbruck, Austria and at the company FIP Mec, Selvazzano Dentro, Padova. Within the research framework of Structural Control, this dissertation proposes novel passive control strategies to mitigate the dynamic response of base isolated structural systems. Among the several types of devices proposed in literature, Tuned Mass Dampers and Tuned Liquid Column Dampers are undoubtedly the most widely employed vibration control devices for coupling with…
Optimal design of tuned liquid column damper inerter for vibration control
Abstract In this paper, the use of a novel passive control device defined as Tuned Liquid Column Damper Inerter (TLCDI) is studied to control the seismic response of structural systems. The TLCDI, recently introduced as an enhanced version of the conventional Tuned Liquid Column Damper, may achieve improved seismic performances by exploiting the mass amplification effect of the so-called inerter device. For this purpose, an optimization procedure for the design of the TLCDI based on a statistical linearization technique and the minimization of the structural displacement variance is proposed. Notably, by assuming a white noise base excitation and considering some additional approximations, …
Simplified analytical solution for the optimal design of Tuned Mass Damper Inerter for base isolated structures
Abstract In this paper the use of the Tuned Mass Damper Inerter (TMDI) to control the response of base isolated structures under stochastic horizontal base acceleration is examined. Notably, the TMDI, recently introduced as a generalization of the classical Tuned Mass Damper, allows to achieve enhanced performance compared to the other passive vibration control devices. Thus, it represents an ideal alternative for reducing displacements of base isolated structures. To this aim, firstly a straightforward numerical approach is developed for the optimal design of this device considering a white noise base excitation. Further, a simplified analytical solution for the optimal design of TMDI para…
An Innovative Ambient Identification Method
Ambient modal identification, also known as Operational Modal Analysis (OMA), aims to identify the modal properties of a structure based on vibration data collected when the structure is under its operating conditions, i.e., no initial excitation or known artificial excitation. This procedure for testing and/or monitoring historic buildings, is particularly attractive for civil engineers concerned with the safety of complex historic structures. However, since the external force is not recorded, the identification methods have to be more sophisticated and based on stochastic mechanics. In this context, this contribution will introduce an innovative ambient identification method based on appl…
Assessment of the tuned mass damper inerter for seismic response control of base‐isolated structures
In this paper, the hybrid control of structures subjected to seismic excitation by means of tuned mass damper inerter (TMDI) and base-isolation subsystems is studied with the aim of improving the dynamic performance of base-isolated structures by reducing the displacement demand of the isolation subsystem. The seismic performance of TMDI hybrid controlled structures is investigated in a comparative study, considering simple isolated systems and systems equipped with other absorber devices such as the tuned mass damper (TMD) and the tuned liquid column damper (TLCD). The TMDI has been optimized by performing a simplified approach based on minimizing the base-isolation subsystem displacement …
Smart structures through nontraditional design of Tuned Mass Damper Inerter for higher control of base isolated systems
Abstract This paper introduces a smart structure design through the definition of an innovative passive control strategy, referred to as New Tuned Mass Damper Inerter (New TMDI), coupled with a base isolation system (BI), to control displacements in base isolated structures under seismic excitations. The herein proposed New TMDI comprises a recently developed nontraditional Tuned Mass Damper (known as New TMD), in which a secondary mass system is connected to the base plate of the BI system by a spring and to the ground by a dashpot, and of an inerter device placed in parallel with the damper. An optimization procedure which minimizes the base displacement variance of the BI system, conside…
A novel identification procedure from ambient vibration data
AbstractAmbient vibration modal identification, also known as Operational Modal Analysis, aims to identify the modal properties of a structure based on vibration data collected when the structure is under its operating conditions, i.e., no initial excitation or known artificial excitation. This procedure for testing and/or monitoring historic buildings, is particularly attractive for civil engineers concerned with the safety of complex historic structures. However, since the external force is not recorded, the identification methods have to be more sophisticated and based on stochastic mechanics. In this context, this contribution will introduce an innovative ambient identification method b…
Nontraditional configuration of tuned liquid column damper inerter for base-isolated structures
In this paper, the concept of a novel passive control device, namely the Nontraditional Tuned Liquid Column Damper Inerter (NT-TLCDI), is investigated in combination with seismic base isolation (BI), to control lateral displacement demands in base-isolated structures during seismic events. The considered NT-TLCDI is a revision of the ordinary configuration of the recently proposed Tuned Liquid Column Damper Inerter (TLCDI). Unlike the traditional TLCDI layout, which involves a secondary liquid mass in a U-shaped tank coupled with a grounded inerter and connected to the isolation system by a spring-dashpot system, in the NT-TLCDI configuration, the damper is in parallel with the inerter rath…
A novel identification procedure from ambient vibration data for buildings of the cultural heritage
Ambient modal identification, also known as Operational Modal Analysis (OMA), aims to identify the modal properties of a structure based on vibration data collected when the structure is under its operating conditions, i.e., no initial excitation or known artificial excitation. This procedure for testing and/or monitoring historic buildings, is particularly attractive for civil engineers concerned with the safety of complex historic structures. However, since the external force is not recorded, the identification methods have to be more sophisticated and based on stochastic mechanics. In this context, this contribution will introduce an innovative ambient identification method based on appl…
OMA: From Research to Engineering Applications
Ambient vibration modal identification, also known as Operational Modal Analysis (OMA), aims to identify the modal properties of a structure based on vibration data collected when the structure is under its operating conditions, i.e., when there is no initial excitation or known artificial excitation. This method for testing and/or monitoring historical buildings and civil structures, is particularly attractive for civil engineers concerned with the safety of complex historical structures. However, in practice, not only records of external force are missing, but uncertainties are involved to a significant extent. Hence, stochastic mechanics approaches are needed in combination with the iden…
Hybrid Passive Control Strategies for Reducing the Displacements at the Base of Seismic Isolated Structures
In this paper, the use of hybrid passive control strategies to mitigate the seismic response of a base-isolated structure is examined. The control performance of three different types of devices used for reducing base displacements of isolated buildings is investigated. Specifically, the Tuned Mass Damper (TMD), the New Tuned Mass Damper (New TMD) and the Tuned Liquid Column Damper (TLCD), each one associated to a Base Isolated structure (BI), have been considered. The seismic induced vibration control of base-isolated structures equipped with the TMD, New TMD or the TLCD is examined and compared with that of the base-isolated system without devices, using real recorded seismic signals as e…