0000000000496260

AUTHOR

B. P. Das

New physics constraints from atomic parity violation in Cs133

Our improved calculation of the nuclear spin-independent parity violating electric dipole transition amplitude ($E{1}_{\mathrm{PV}}$) for $6s{^{2}S}_{1/2}\ensuremath{-}7s{^{2}S}_{1/2}$ in $^{133}\mathrm{Cs}$ in combination with the most accurate (0.3%) measurement of this quantity yields a new value for the nuclear weak charge ${Q}_{W}=\ensuremath{-}73.71(26{)}_{ex}(23{)}_{th}$ against the Standard Model (SM) prediction ${Q}_{W}^{\mathrm{SM}}=\ensuremath{-}73.23(1)$. The advances in our calculation of $E{1}_{\mathrm{PV}}$ have been achieved by using a variant of the perturbed relativistic coupled-cluster theory, which treats the contributions of the core, valence, and excited states to $E{1…

research product

New Physics Constraints from Atomic Parity Violation in $^{133}$Cs

Our improved calculation of the nuclear spin-independent parity violating electric dipole transition amplitude ($E1_{PV}$) for $6s ~ ^2S_{1/2} - 7s ~ ^2S_{1/2}$ in $^{133}$Cs in combination with the most accurate (0.3\%) measurement of this quantity yields a new value for the nuclear weak charge $Q_W=-73.71(26)_{ex} (23)_{th}$ against the Standard Model (SM) prediction $Q_W^{\text{SM}}=-73.23(1)$. The advances in our calculation of $E1_{PV}$ have been achieved by using a variant of the perturbed relativistic coupled-cluster theory which treats the contributions of the core, valence and excited states to $E1_{PV}$ on the same footing unlike the previous high precision calculations. Furthermo…

research product