0000000000496577
AUTHOR
B. M. Sherrill
Study of the β-delayed neutron decay of 17C and 18C
Abstract The β-delayed neutron decays of 17C and 18C have been studied using a time-of-flight array with a high detection efficiency. The 17C and 18C ions were produced by fragmentation of an E A = 69 MeV 22Ne beam. Transitions to several neutron unbound states have been observed for the first time for both decays with total branching ratios of (10.8 ± 2.2)% and (21.4 ± 4.4)%. Half-lives of 193 ± 6 ms and 92 ± 2 ms were found for 17C and 18C, respectively. The results are compared with previous measurements of the β-decays and with shell-model calculations.
New experimental efforts along the rp-process path
The level structure just above the proton threshold of the nucleus 30S has been studied using the neutron removal process on fast radioactive beams at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. In this work we provide a description of the experimental setup. The present status of the analysis is also discussed.
Neutron momentum distributions from "core break-up" reactions of halo nuclei
Neutron angular distributions from violent break-up reactions of Li-11 and Be-11 have been measured at 28 MeV/u and 280 MeV/u and at 41 MeV/u and 460 MeV/u, respectively. The derived neutron momentum distributions show a narrow component in transverse momentum that is within uncertainties independent of beam energy and target charge. This component is suggested to be simply related to the momentum distribution of the loosely bound halo neutron(s) in the projectiles.
Dissociation of 8He into 6He + n + X at 240 MeV/u
4 pages, 3 figures, 2 tables.
Study of the Unstable NucleusL10iin Stripping Reactions of the Radioactive ProjectilesB11eandL11i
Reactions of the halo systems Be-11 and Li-11 (at 460 and 280 MeV/nucleon) with a carbon target demonstrate that (n + Li-9) has an (unbound) l = 0 ground state very close to the threshold. The neutron halo of Li-11 has appreciable (1s(1/2))(2) and (0p(1/2))(2) components.
Improving the nuclear physics input along the rp-process path
The level structure of 30 S was studied at the NSCL by using neutron removal reactions with a radioactive 31 S beam. The γ -decay from excited states in 30 S was measured in a Ge-detector array. The results discussed for this work will reduce the uncertainties in the determination of the astrophysical 29 P(p, γ ) 30 S reaction rate under rp -process conditions.
The Super-FRS Project at GSI
The GSI projectile fragment separator FRS has demonstrated with many pioneering experiments the research potential of in-flight separators at relativistic energies. Although the present facility has contributed much to the progress in the field of nuclear structure physics, major improvements are desirable in the future. The characteristics of the proposed next-generation facility at GSI, the Super-FRS, will be presented and compared to other projects. The Super-FRS is a large-acceptance superconducting fragment separator followed by different experimental branches including a combination with a new storage-cooler ring system. This system consists of a collector ring (CR) and a new experime…
Nucleosynthesis of proton-rich nuclei. Experimental results on the rp-process
Experience NSCL; International audience; We report in this study the nuclear properties of proton-rich isotopes located along the rp-process path. The experiments have recently been performed at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The level properties above the proton separation energy of the nuclei 30S, 36K and 37Ca were measured with precision of < 10 keV. This will allow a reduction in the determination of the astrophysical (p, ) reaction rate under rp-process conditions.
Longitudinal and transverse momentum distributions of 9Li fragments from break-up of 11Li
7 pages, 3 figures, 1 table.