0000000000496679
AUTHOR
Kin Man Yu
Effects of Nid-levels on the electronic band structure of NixCd1-xO semiconducting alloys
NixCd1-xO has a ∼3 eV band edge offset and bandgap varying from 2.2 to 3.6 eV, which is potentially important for transparent electronic and photovoltaic applications. We present a systematic study of the electronic band structure of NixCd1-xO alloys across the composition range. Ion irradiation of alloy samples leads to a saturation of the electron concentration associated with pinning of the Fermi level (EF) at the Fermi stabilization energy, the common energy reference located at 4.9 eV below the vacuum level. The composition dependence of the pinned EF allows determination of the conduction band minimum (CBM) energy relative to the vacuum level. The unusually strong deviation of the CBM…
Growth and characterization of ZnO1−xSx highly mismatched alloys over the entire composition
Alloys from ZnO and ZnS have been synthesized by radio-frequency magnetron sputtering over the entire alloying range. The ZnO1−xSx films are crystalline for all compositions. The optical absorption edge of these alloys decreases rapidly with small amount of added sulfur (x ∼ 0.02) and continues to red shift to a minimum of 2.6 eV at x = 0.45. At higher sulfur concentrations (x > 0.45), the absorption edge shows a continuous blue shift. The strong reduction in the band gap for O-rich alloys is the result of the upward shift of the valence-band edge with x as observed by x-ray photoelectron spectroscopy. As a result, the room temperature bandgap of ZnO1−xSx alloys can be tuned from 3.7 eV to …