0000000000496898

AUTHOR

Gian Paolo Leonardi

0000-0003-1944-312x

showing 2 related works from this author

Corners in non-equiregular sub-Riemannian manifolds

2014

We prove that in a class of non-equiregular sub-Riemannian manifolds corners are not length minimizing. This extends the results of (G.P. Leonardi and R. Monti, Geom. Funct. Anal. 18 (2008) 552-582). As an application of our main result we complete and simplify the analysis in (R. Monti, Ann. Mat. Pura Appl. (2013)), showing that in a 4-dimensional sub-Riemannian structure suggested by Agrachev and Gauthier all length-minimizing curves are smooth. Mathematics Subject Classification. 53C17, 49K21, 49J15.

Mathematics - Differential GeometryPure mathematicsClass (set theory)Control and Optimizationregularity of geodesicsStructure (category theory)Mathematics - Analysis of PDEsMathematics - Metric GeometryFOS: MathematicsGEOMSub-Riemannian geometry regularity of geodesics cornersMathematics - Optimization and ControlMathematicsta111Computational mathematicsMetric Geometry (math.MG)cornerssub-riemannian geometryComputational MathematicsCorners; Regularity of geodesics; Sub-Riemannian geometry; Control and Systems Engineering; Control and Optimization; Computational MathematicsDifferential Geometry (math.DG)Mathematics Subject ClassificationOptimization and Control (math.OC)Control and Systems EngineeringMathematics::Differential GeometryAnalysis of PDEs (math.AP)
researchProduct

Extremal polynomials in stratified groups

2018

We introduce a family of extremal polynomials associated with the prolongation of a stratified nilpotent Lie algebra. These polynomials are related to a new algebraic characterization of abnormal subriemannian geodesics in stratified nilpotent Lie groups. They satisfy a set of remarkable structure relations that are used to integrate the adjoint equations.

Statistics and Probabilityextremal polynomialsMathematics - Differential GeometryPure mathematicsGeodesicStructure (category theory)Group Theory (math.GR)Characterization (mathematics)algebra01 natural sciencesdifferentiaaligeometriaMathematics - Analysis of PDEsMathematics - Metric Geometry53C17FOS: Mathematics0101 mathematicsAlgebraic numberMathematics - Differential Geometry; Mathematics - Differential Geometry; Mathematics - Analysis of PDEs; Mathematics - Group Theory; Mathematics - Metric Geometry; Mathematics - Optimization and Control; 53C17; 49K30; 17B70Mathematics - Optimization and ControlMathematics010102 general mathematicsStatisticsta111polynomitProlongation53C17 49K30 17B70Lie groupMetric Geometry (math.MG)abnormal extremals010101 applied mathematicsNilpotent Lie algebraNilpotentsub-Riemannian geometryabnormal extremals extremal polynomials Carnot groups sub-Riemannian geometryAbnormal extremals; Carnot groups; Extremal polynomials; Sub-Riemannian geometry; Analysis; Statistics and Probability; Geometry and Topology; Statistics Probability and UncertaintyDifferential Geometry (math.DG)Optimization and Control (math.OC)Carnot groups17B70Probability and UncertaintyGeometry and TopologyStatistics Probability and UncertaintyMathematics - Group TheoryAnalysisAnalysis of PDEs (math.AP)Mathematics - Differential Geometry; Mathematics - Differential Geometry; Mathematics - Analysis of PDEs; Mathematics - Group Theory; Mathematics - Metric Geometry; Mathematics - Optimization and Control; 53C17 49K30 17B7049K30
researchProduct