0000000000497080

AUTHOR

Carlos Panizo

Preclinical models for prediction of immunotherapy outcomes and immune evasion mechanisms in genetically heterogeneous multiple myeloma

AbstractThe historical lack of preclinical models reflecting the genetic heterogeneity of multiple myeloma (MM) hampers the advance of therapeutic discoveries. To circumvent this limitation, we screened mice engineered to carry eight MM lesions (NF-κB, KRAS, MYC, TP53, BCL2, cyclin D1, MMSET/NSD2 and c-MAF) combinatorially activated in B lymphocytes following T cell-driven immunization. Fifteen genetically diverse models developed bone marrow (BM) tumors fulfilling MM pathogenesis. Integrative analyses of ∼500 mice and ∼1,000 patients revealed a common MAPK–MYC genetic pathway that accelerated time to progression from precursor states across genetically heterogeneous MM. MYC-dependent time …

research product

Preneoplastic somatic mutations including MYD88(L265P) in lymphoplasmacytic lymphoma

Normal cell counterparts of solid and myeloid tumors accumulate mutations years before disease onset; whether this occurs in B lymphocytes before lymphoma remains uncertain. We sequenced multiple stages of the B lineage in elderly individuals and patients with lymphoplasmacytic lymphoma, a singular disease for studying lymphomagenesis because of the high prevalence of mutated MYD88 . We observed similar accumulation of random mutations in B lineages from both cohorts and unexpectedly found MYD88 L265P in normal precursor and mature B lymphocytes from patients with lymphoma. We uncovered genetic and transcriptional pathways driving malignant transformation and leveraged these to model lymph…

research product

Homeobox NKX2-3 promotes marginal-zone lymphomagenesis by activating B-cell receptor signalling and shaping lymphocyte dynamics

NKX2 homeobox family proteins have a role in cancer development. Here we show that NKX2-3 is overexpressed in tumour cells from a subset of patients with marginal-zone lymphomas, but not with other B-cell malignancies. While Nkx2-3-deficient mice exhibit the absence of marginal-zone B cells, transgenic mice with expression of NKX2-3 in B cells show marginal-zone expansion that leads to the development of tumours, faithfully recapitulating the principal clinical and biological features of human marginal-zone lymphomas. NKX2-3 induces B-cell receptor signalling by phosphorylating Lyn/Syk kinases, which in turn activate multiple integrins (LFA-1, VLA-4), adhesion molecules (ICAM-1, MadCAM-1) a…

research product

Immune biomarkers to predict SARS-CoV-2 vaccine effectiveness in patients with hematological malignancies

AbstractThere is evidence of reduced SARS-CoV-2 vaccine effectiveness in patients with hematological malignancies. We hypothesized that tumor and treatment-related immunosuppression can be depicted in peripheral blood, and that immune profiling prior to vaccination can help predict immunogenicity. We performed a comprehensive immunological characterization of 83 hematological patients before vaccination and measured IgM, IgG, and IgA antibody response to four viral antigens at day +7 after second-dose COVID-19 vaccination using multidimensional and computational flow cytometry. Health care practitioners of similar age were the control group (n = 102). Forty-four out of 59 immune cell types …

research product

Splenic Marginal Zone Lymphoma Shows a Distinct Pattern of DNA Copy Number Aberrations That Correlates with Tumor Characteristics and Predicts Disease Outcome.

Abstract Splenic marginal zone lymphoma (SMZL) is an indolent B cell malignancy whose diagnosis is based on lymphocyte morphology, immunophenotype and marrow and/or splenic histology. Unlike other lymphomas, there is not a common chromosomal translocation specific for SMZL, and genetic prognostic factors are poorly defined. To investigate the pattern of genomic aberrations in SMZL, we applied comparative genomic hybridization to BAC microarrays (array CGH) to a well characterized series of 75 SMZL specimens. We applied two different 1 Mb-resolution BAC arrays: UCSF HumArray 3.2 and a novel array CGH platform developed at Univ. of Salamanca. These arrays allowed us to detect DNA copy number …

research product