0000000000498277

AUTHOR

Michel Lintz

Multiple four-wave mixing in optical fibers: 1.5–3.4-THz femtosecond pulse sources and real-time monitoring of a 20-GHz picosecond source

International audience; In this work, we report recent progress on the design of all-fibered ultra-high repetition-rate pulse sources for telecommunication applications around 1550 nm. The sources are based on the non-linear compression of an initial beat-signal through a multiple four-wave mixing process taking place into an optical fiber. We experimentally demonstrate real-time monitoring of a 20 GHz pulse source having an integrated phase noise 0.01 radian by phase locking the initial beat note against a reference RF oscillator. Based on this technique, we also experimentally demonstrate a well-separated high-quality 110 fs pulse source having a repetition rate of 2 THz. Finally, we show…

research product

All-Fibered High-Quality 20-GHz and 40-GHz Picosecond Pulse Generator

International audience; In this work, we investigate the generation of 20 and 40 GHz pulse trains by nonlinear compression of an initial beating in a cavity-less optical-fiber-based configuration. High temporal stability is obtained by generating the sinusoidal beating by means of an intensity modulator driven by an external clock. The residual timing jitter induced by the RF phase modulation is then reduced by managing the cumulated dispersion of the compression line whereas complete polarization stabilization is obtained thanks to a modified setup including a Faraday rotator mirror. Finally a high-quality 160 Gbit/s signal is generated from our low duty-cycle 40 GHz pulse source thanks to…

research product

Impact d'une modulation de phase anti-Brillouin sur la génération d'un train d'impulsions picosecondes dans une fibre optique

National audience; Dans ce travail, nous mettons en évidence l'influence d'une modulation de phase anti-Brillouin sur la gigue temporelle d'un train d'impulsions picosecondes généré par compression non-linéaire d'un battement sinusoïdal au sein d'une fibre optique.

research product

On recent progress in all-fibered pulsed optical sources from 20 GHz to 2 THz based on multiple four wave mixing approach

International audience; In this paper, we report recent progress on the design of all-fibered ultra-high repetition-rate pulse sources for telecommunication applications around 1550 nm. Based on the nonlinear compression of an initial beat-signal in optical fibers through a multiple four-wave mixing process, we theoretically and experimentally demonstrate that this simple technique allows an efficient and accurate design of versatile pulse sources having repetition rates and pulse durations ranging from 20 GHz up to 2 THz and from 10 ps up to 110 fs, respectively.

research product