Overload breakdown in models for photosynthesis
In many models of the Calvin cycle of photosynthesis it is observed that there are solutions where concentrations of key substances belonging to the cycle tend to zero at late times, a phenomenon known as overload breakdown. In this paper we prove theorems about the existence and non-existence of solutions of this type and obtain information on which concentrations tend to zero when overload breakdown occurs. As a starting point we take a model of Pettersson and Ryde-Pettersson which seems to be prone to overload breakdown and a modification of it due to Poolman which was intended to avoid this effect.