0000000000498537
AUTHOR
Ulrich Heil
Artefacts in CBCT: a review
Artefacts are common in today's cone beam CT (CBCT). They are induced by discrepancies between the mathematical modelling and the actual physical imaging process. Since artefacts may interfere with the diagnostic process performed on CBCT data sets, every user should be aware of their presence. This article aims to discuss the most prominent artefacts identified in the scientific literature and review the existing knowledge on these artefacts. We also briefly review the basic three-dimensional (3D) reconstruction concept applied by today's CBCT scanners, as all artefacts are more or less directly related to it.
Auto calibration of a cone-beam-CT
Purpose: This paper introduces a novel autocalibration method for cone-beam-CTs (CBCT) or flat-panel CTs, assuming a perfect rotation. The method is based on ellipse-fitting. Autocalibration refers to accurate recovery of the geometric alignment of a CBCT device from projection images alone, without any manual measurements. Methods: The authors use test objects containing small arbitrarily positioned radio-opaque markers. No information regarding the relative positions of the markers is used. In practice, the authors use three to eight metal ball bearings (diameter of 1 mm), e.g., positioned roughly in a vertical line such that their projection image curves on the detector preferably form l…
Accurate registration of random radiographic projections based on three spherical references for the purpose of few-view 3D reconstruction
Precise registration of radiographic projection images acquired in almost arbitrary geometries for the purpose of three-dimensional (3D) reconstruction is beset with difficulties. We modify and enhance a registration method [R. Schulze, D. D. Bruellmann, F. Roeder, and B. d'Hoedt, Med. Phys. 31, 2849-2854 (2004)] based on coupling a minimum amount of three reference spheres in arbitrary positions to a rigid object under study for precise a posteriori pose estimation. Two consecutive optimization procedures (a, initial guess; b, iterative coordinate refinement) are applied to completely exploit the reference's shadow information for precise registration of the projections. The modification h…
Total Variation Regularization in Digital Breast Tomosynthesis
We developed an iterative algebraic algorithm for the reconstruction of 3D volumes from limited-angle breast projection images. Algebraic reconstruction is accelerated using the graphics processing unit. We varied a total variation (TV)-norm parameter in order to verify the influence of TV regularization on the representation of small structures in the reconstructions. The Barzilai-Borwein algorithm is used to solve the inverse reconstruction problem. The quality of our reconstructions was evaluated with the Quart Mam/Digi Phantom, which features so-called Landolt ring structures to verify perceptibility limits. The evaluation of the reconstructions was done with an automatic LR detection a…
Metal artifact reduction in x-ray computed tomography: Inpainting versus missing value
A comparison of algorithms for reduction of metal artifacts in x-ray cone beam computed tomography (CBCT) is presented. In the context of algebraic reconstruction techniques (ART) several inpainting algorithms in the image domain are evaluated against missing data strategies. A GPU-based iterative framework is employed for a meaningful comparison of both. Simulation results from an extended Shepp-Logan phantom and real world dental data are given.