0000000000501024
AUTHOR
Ileana L. Hanganu-opatz
Activation of glycine receptors modulates spontaneous epileptiform activity in the immature rat hippocampus
While the expression of glycine receptors in the immature hippocampus has been shown, no information about the role of glycine receptors in controlling the excitability in the immature CNS is available. Therefore, we examined the effect of glycinergic agonists and antagonists in the CA3 region of an intact corticohippocampal preparation of the immature (postnatal days 4-7) rat using field potential recordings. Bath application of 100 μM taurine or 10 μM glycine enhanced the occurrence of recurrent epileptiform activity induced by 20 μM 4-aminopyridine in low Mg(2+) solution. This proconvulsive effect was prevented by 3 μM strychnine or after incubation with the loop diuretic bumetanide (10 …
Neocortical Layer 6B as a Remnant of the Subplate - A Morphological Comparison.
The fate of the subplate (SP) is still a matter of debate. The SP and layer 6 (which is ontogenetically the oldest and innermost neocortical lamina) develop coincidentally. Yet, the function of sublamina 6B is largely unknown. It has been suggested that it consists partly of neurons from the transient SP, however, experimental evidence for this hypothesis is still missing. To obtain first insights into the neuronal complement of layer 6B in the somatosensory rat barrel cortex, we used biocytin stainings of SP neurons (aged 0-4 postnatal days, PND) and layer 6B neurons (PND 11-35) obtained during in vitro whole-cell patch-clamp recordings. Neurons were reconstructed for a quantitative charac…
Subplate Cells: Amplifiers of Neuronal Activity in the Developing Cerebral Cortex
Due to their unique structural and functional properties, subplate cells are ideally suited to function as important amplifying units within the developing neocortical circuit. Subplate neurons have extensive dendritic and axonal ramifications and relatively mature functional properties, i.e. their action potential firing can exceed frequencies of 40 Hz. At earliest stages of corticogenesis subplate cells receive functional synaptic inputs from the thalamus and from other cortical and non-cortical sources. Glutamatergic and depolarizing GABAergic inputs arise from cortical neurons and neuromodulatory inputs arise from the basal forebrain and other sources. Activation of postsynaptic metabot…
Three Patterns of Oscillatory Activity Differentially Synchronize Developing Neocortical Networks In Vivo
Coordinated patterns of electrical activity are important for the early development of sensory systems. The spatiotemporal dynamics of these early activity patterns and the role of the peripheral sensory input for their generation are essentially unknown. We performed extracellular multielectrode recordings in the somatosensory cortex of postnatal day 0 to 7 rats in vivo and observed three distinct patterns of synchronized oscillatory activity. (1) Spontaneous and periphery-driven spindle bursts of 1-2 s in duration and approximately 10 Hz in frequency occurred approximately every 10 s. (2) Spontaneous and sensory-driven gamma oscillations of 150-300 ms duration and 30-40 Hz in frequency oc…