0000000000501222

AUTHOR

T. R. Forrest

showing 2 related works from this author

Mechanism of Néel Order Switching in Antiferromagnetic Thin Films Revealed by Magnetotransport and Direct Imaging.

2019

We probe the current-induced magnetic switching of insulating antiferromagnet/heavy metals systems, by electrical spin Hall magnetoresistance measurements and direct imaging, identifying a reversal occurring by domain wall (DW) motion. We observe switching of more than one third of the antiferromagnetic domains by the application of current pulses. Our data reveal two different magnetic switching mechanisms leading together to an efficient switching, namely the spin-current induced effective magnetic anisotropy variation and the action of the spin torque on the DWs.

Condensed Matter - Materials ScienceMaterials scienceMagnetoresistanceCondensed matter physicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyLarge scale facilities for research with photons neutrons and ionsDirect imaging01 natural sciences3. Good healthMagnetic anisotropyOrder (biology)Domain wall (magnetism)0103 physical sciencesTorqueAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsThin film010306 general physicsSpin-½Physical Review Letters
researchProduct

Imaging of current induced Néel vector switching in antiferromagnetic Mn 2 Au

2019

The effects of current induced N\'eel spin-orbit torques on the antiferromagnetic domain structure of epitaxial Mn$_2$Au thin films were investigated by X-ray magnetic linear dichroism - photoemission electron microscopy (XMLD-PEEM). We observed current induced switching of AFM domains essentially corresponding to morphological features of the samples. Reversible as well as irreversible N\'eel vector reorientation was obtained in different parts of the samples and the switching of up to 30 % of all domains in the field of view of 10 $\mu$m is demonstrated. Our direct microscopical observations are compared to and fully consistent with anisotropic magnetoresistance effects previously attribu…

Condensed Matter - Materials ScienceMaterials scienceCurrent (mathematics)Condensed matter physicsMagnetoresistance02 engineering and technology021001 nanoscience & nanotechnologyEpitaxy01 natural sciences3. Good healthCondensed Matter::Materials Science0103 physical sciencesDomain (ring theory)AntiferromagnetismCondensed Matter::Strongly Correlated ElectronsThin film010306 general physics0210 nano-technologyPhysical Review B
researchProduct