0000000000501541

AUTHOR

Susanne Mecklenburg

showing 2 related works from this author

First evaluation of the simultaneous SMOS and ELBARA-II observations in the Mediterranean region

2012

Abstract The SMOS (Soil Moisture and Ocean Salinity) mission was launched on November 2, 2009. Over the land surfaces, simultaneous retrievals of surface soil moisture (SM) and vegetation characteristics made from the multi-angular and dual polarization SMOS observations are now available from Level-2 (L2) products delivered by the European Space Agency (ESA). Therefore, first analyses evaluating the SMOS observations in terms of Brightness Temperatures (TB) and L2 products (SM and vegetation optical depth TAU) can be carried out over several calibration/validation (cal/val) sites selected by ESA over all continents. This study is based on SMOS observations and in situ measurements carried …

Mediterranean climate010504 meteorology & atmospheric sciences[SDV]Life Sciences [q-bio]0211 other engineering and technologiesSoil Science550 - Earth sciences02 engineering and technology01 natural sciencesVineyardNormalized Difference Vegetation Index14. Life underwaterComputers in Earth SciencesWater contentComputingMilieux_MISCELLANEOUS021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRadiometerGeology15. Life on land13. Climate actionBrightness temperatureSoil water[SDE]Environmental SciencesEnvironmental sciencesoil moisture; optical depth; retrievals; mediterranean environment; level 2 algorithm; brightness temperature; vineyards; soil; NDVI; MODIS;Moderate-resolution imaging spectroradiometerSMOS
researchProduct

Esa's SMOS Mission – Supporting Agricultural Applications

2018

The European Space Agency's (ESA) SMOS mission, in orbit since more than 8 years, carries a passive microwave interferometric radiometer measuring in L-Band and provides accurate global observations of emitted radiation originating from the Earth's surfaces since the atmosphere is almost transparent in this spectral range. In addition, over land the effect of vegetation on the measurements is smaller than for shorter wavelengths. The scientific objectives of the SMOS mission directly respond to the need for global observations of soil moisture and ocean salinity, two key variables used in predictive hydrological, oceanographic and atmospheric models. SMOS observations also provide informati…

geographygeography.geographical_feature_categoryAtmospheric modelsVegetationSnowPhysics::GeophysicsAtmosphereBrightness temperatureOrbit (dynamics)Sea iceEnvironmental scienceAstrophysics::Earth and Planetary AstrophysicsPhysics::Atmospheric and Oceanic PhysicsInterferometric radiometerRemote sensingIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct