0000000000501788
AUTHOR
Adolfo Ballester Bolinches
Z-permutable subgroups of finite groups
Let Z be a complete set of Sylow subgroups of a finite group G, that is, a set composed of a Sylow p-subgroup of G for each p dividing the order of G. A subgroup H of G is called Z-permutable if H permutes with all members of Z. The main goal of this paper is to study the embedding of the Z-permutable subgroups and the influence of Z-permutability on the group structure.
On finite T-groups
[EN] Characterisations of finite groups in which normality is a transitive relation are presented in the paper. We also characterise the finite groups in which every subgroup is either permutable or coincides with its permutiser as the groups in which every subgroup is permutable.
A note on finite PST-groups
[EN] A finite group G is said to be a PST-group if, for subgroups H and K of G with H Sylow-permutable in K and K Sylow-permutable in G, it is always the case that H is Sylow-permutable in G. A group G is a T*-group if, for subgroups H and K of G with H normal in K and K normal in G, it is always the case that H is Sylow-permutable in G. In this paper, we show that finite PST-groups and finite T*-groups are one and the same. A new characterisation of soluble PST-groups is also presented.
Some group-theoretical approaches to skew left braces
The algebraic structure of skew left brace has become a useful tool to construct set-theoretic solutions of the Yang-Baxter equation. In this survey we present some descriptions of skew left braces in terms of bijective derivations, triply factorised groups, and regular subgroups of the holomorph of a group, as well as some applications of these descriptions to the study of substructures, nilpotency, and factorised skew left braces.
Real elements and p-nilpotence of finite groups
Our first main result proves that every element of order 4 of a Sylow 2-subgroup S of a minimal non-2-nilpotent group G, is a real element of S. This allows to give a character-free proof of a theorem due to Isaacs and Navarro (see [9, Theorem B]). As an application, the authors show a common extension of the p-nilpotence criteria proved in [3] and [9]. The first and the second authors have been supported by the grant MTM2014-54707-C3-1-P from the Ministerio de Economía y Competitividad, Spain, and FEDER, European Union. The first author has been also supported by a project from the National Natural Science Foundation of China (NSFC, No. 11271085) and a project of Natural Science Foundation…