0000000000501997

AUTHOR

Edijs Kauranens

showing 7 related works from this author

Cryogenic nanoelectromechanical switch enabled by Bi2Se3 nanoribbons

2022

Abstract Nanoelectromechanical (NEM) switches are potential candidates for memory and logic devices for low standby-current and harsh environment applications. Cryogenic operation of these devices would allow to use them, e.g., in space probes and in conjunction with quantum computers. Herein, it is demonstrated that cryogenic application requirements such as good flexibility and conductivity are satisfied by using Bi2Se3 nanoribbons as active elements in NEM switches. Experimental proof of principle NEM switching at temperatures as low as 5 K is achieved in volatile and non-volatile reversible regimes, exhibiting distinct ON and OFF states, backed by theoretical modelling. The results open…

Flexibility (engineering)Materials sciencebusiness.industryMechanical EngineeringElectrical engineeringCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsSpace (mathematics)Development (topology)Experimental proofMechanics of MaterialsHardware_INTEGRATEDCIRCUITSGeneral Materials SciencebusinessAND gateQuantum computerMaterials Science and Engineering: B
researchProduct

Thickness-dependent properties of ultrathin bismuth and antimony chalcogenide films formed by physical vapor deposition and their application in ther…

2021

This work was supported by the European Regional Development Fund (ERDF) project No 1.1.1.1/16/A/257. J. A. acknowledges the ERDF project No. 1.1.1.2/1/16/037. Institute of Solid State Physics, University of Latvia, Latvia as the Center of Excellence has received funding from the European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017 TeamingPhase2 under grant agreement No. 739508, project CAMART2 . The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form a part of an ongoing study.

Materials scienceThickness-dependent thermoelectric propertiesChalcogenideMaterials Science (miscellaneous)Energy Engineering and Power Technologychemistry.chemical_element02 engineering and technology010402 general chemistry7. Clean energy01 natural sciencesBismuthlaw.inventionchemistry.chemical_compoundUltrathin filmlawSeebeck coefficientBismuth chalcogenide:NATURAL SCIENCES:Physics [Research Subject Categories]Thin filmFused quartzAntimony tellurideRenewable Energy Sustainability and the Environmentbusiness.industryAntimony telluride021001 nanoscience & nanotechnology0104 chemical sciencesFuel TechnologyNuclear Energy and EngineeringchemistryPhysical vapor depositionOptoelectronics0210 nano-technologybusinessMolecular beam epitaxyNarrow band gap layered semiconductor
researchProduct

High-Yield Growth and Tunable Morphology of Bi2Se3 Nanoribbons Synthesized on Thermally Dewetted Au

2021

The yield and morphology (length, width, thickness) of stoichiometric Bi2Se3 nanoribbons grown by physical vapor deposition is studied as a function of the diameters and areal number density of the Au catalyst nanoparticles of mean diameters 8–150 nm formed by dewetting Au layers of thicknesses 1.5–16 nm. The highest yield of the Bi2Se3 nanoribbons is reached when synthesized on dewetted 3 nm thick Au layer (mean diameter of Au nanoparticles ~10 nm) and exceeds the nanoribbon yield obtained in catalyst-free synthesis by almost 50 times. The mean lengths and thicknesses of the Bi2Se3 nanoribbons are directly proportional to the mean diameters of Au catalyst nanoparticles. In contrast, the me…

Materials scienceNumber densityYield (engineering)synthesisGeneral Chemical EngineeringAnalytical chemistryNanoparticleBi<sub>2</sub>Se<sub>3</sub>ChemistryPhysical vapor depositionnanoribbonGeneral Materials ScienceDewettingQD1-999physical vapor depositionNanoscopic scaleStoichiometryDeposition (law)Nanomaterials
researchProduct

Size Distribution, Mechanical and Electrical Properties of CuO Nanowires Grown by Modified Thermal Oxidation Methods

2020

Size distribution, Young&rsquo

Thermal oxidationYield (engineering)Materials sciencesynthesisthermal oxidationGeneral Chemical EngineeringNanowireResonanceYoung's modulusArticlelcsh:ChemistryCuONEMSsymbols.namesakelcsh:QD1-999Electrical resistivity and conductivityElectric fieldnanowiresymbolsGeneral Materials ScienceYoung’s modulusComposite materialOrder of magnitudeelectrical resistivityNanomaterials
researchProduct

Magnetotransport Studies of Encapsulated Topological Insulator Bi2Se3 Nanoribbons

2022

This research was funded by the Latvian Council of Science, project “Highly tunable surface state transport in topological insulator nanoribbons”, No. lzp-2020/2-0343, and by the European Union’s Horizon 2020 research and innovation program, Grant Agreement No. 766714/ HiTIMe. Institute of Solid-State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.

Bi<sub>2</sub>Se<sub>3</sub> nanoribbons; ZnO; magnetotransportBi2Se3 nanoribbonsGeneral Chemical EngineeringMaterials ChemistryZnOGeneral Materials Science:NATURAL SCIENCES::Physics [Research Subject Categories]Other Materials EngineeringCondensed Matter Physicsmagnetotransport
researchProduct

Effect of graphene substrate type on formation of Bi2Se3 nanoplates

2019

AbstractKnowledge of nucleation and further growth of Bi2Se3 nanoplates on different substrates is crucial for obtaining ultrathin nanostructures and films of this material by physical vapour deposition technique. In this work, Bi2Se3 nanoplates were deposited under the same experimental conditions on different types of graphene substrates (as-transferred and post-annealed chemical vapour deposition grown monolayer graphene, monolayer graphene grown on silicon carbide substrate). Dimensions of the nanoplates deposited on graphene substrates were compared with the dimensions of the nanoplates deposited on mechanically exfoliated mica and highly ordered pyrolytic graphite flakes used as refer…

0301 basic medicineNanostructureMaterials scienceNucleationlcsh:MedicineSubstrate (electronics)Chemical vapor depositionTOPOLOGICAL INSULATORGRAIN-BOUNDARIESArticlelaw.invention03 medical and health scienceschemistry.chemical_compoundTHIN-FILMS0302 clinical medicinelawSilicon carbide[CHIM]Chemical SciencesPyrolytic carbonThin filmlcsh:ScienceMultidisciplinaryGraphenelcsh:R030104 developmental biologySINGLEchemistryChemical engineeringGROWTHlcsh:Q030217 neurology & neurosurgeryScientific Reports
researchProduct

Piecpadsmitās grupas metālu halkogenīdu plāno kārtiņu sintēze, fizikālo īpašību raksturojums un pielietojums termoelektriskās ierīcēs

2019

Termoelektriskie ģeneratori ir ierīces, kuras, pastāvot temperatūras gradientam, spēj ražot elektrisko strāvu. Jeb vienkāršiem vārdiem sakot, šīs ierīces siltumu pārvērš elektrībā. Tas ir ērts veids, kā nelietderīgi radušos siltumu jebkuros citos procesos pārveidot vēlamā elektriskajā enerģijā. Taču mūsdienās šādas ietaises ir reti sastopamas to zemās lietderības un citu faktoru dēļ. Termoelektriskie ģeneratori visbiežāk sastāv no atsevišķu n un p tipa pusvadītāju elementu dažādiem slēgumiem, lai pēc nepieciešamības palielinātu izejas strāvu un spriegumu. Šajā gadījumā tiek apskatīts n tipa bismuta selenīda un p tipa antimona telurīda virknes slēgums dažādās konfigurācijās attiecībā pret te…

Bismuta selenīdsZēbeka koeficientsAntimona telurīdsFizikaTermoelektriskie ģeneratori
researchProduct