6533b832fe1ef96bd129acf0

RESEARCH PRODUCT

Thickness-dependent properties of ultrathin bismuth and antimony chalcogenide films formed by physical vapor deposition and their application in thermoelectric generators

Anatolijs SarakovskisEdijs KauranensIvan KomissarovJana AndzaneK.a. NiheryshA. V. FelsharukDonats ErtsMikhael BechelanyUldis Malinovskis

subject

Materials scienceThickness-dependent thermoelectric propertiesChalcogenideMaterials Science (miscellaneous)Energy Engineering and Power Technologychemistry.chemical_element02 engineering and technology010402 general chemistry7. Clean energy01 natural sciencesBismuthlaw.inventionchemistry.chemical_compoundUltrathin filmlawSeebeck coefficientBismuth chalcogenide:NATURAL SCIENCES:Physics [Research Subject Categories]Thin filmFused quartzAntimony tellurideRenewable Energy Sustainability and the Environmentbusiness.industryAntimony telluride021001 nanoscience & nanotechnology0104 chemical sciencesFuel TechnologyNuclear Energy and EngineeringchemistryPhysical vapor depositionOptoelectronics0210 nano-technologybusinessMolecular beam epitaxyNarrow band gap layered semiconductor

description

This work was supported by the European Regional Development Fund (ERDF) project No 1.1.1.1/16/A/257. J. A. acknowledges the ERDF project No. 1.1.1.2/1/16/037. Institute of Solid State Physics, University of Latvia, Latvia as the Center of Excellence has received funding from the European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017 TeamingPhase2 under grant agreement No. 739508, project CAMART2 . The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form a part of an ongoing study.

10.1016/j.mtener.2020.100587https://dspace.lu.lv/dspace/handle/7/53308