Search results for "Chalcogenide"

showing 10 items of 141 documents

Aqueous Corrosion of the GeSe4 Chalcogenide Glass: Surface Properties and Corrosion Mechanism

2009

International audience; The aqueous corrosion behavior of the GeSe4 glass composition has been studied over time under various conditions (temperature and pH). The evolution of the surface topography by atomic force microscopy and properties such as surface hardness and reduced modulus, as well as the optical transmission in the 1-16 μm window, have been measured as a function of time spent in the corrosive solution. It was found that even if the glass reacts at room temperature, its optical transparency was barely affected. Nevertheless, the durability of GeSe4 was found to be drastically affected by an increase of both temperature and pH. Furthermore, pure selenium nanoparticles were form…

010302 applied physicsReaction mechanismOptical fiberMaterials scienceMetallurgyHexagonal phaseNanoparticleChalcogenide glass02 engineering and technologyActivation energy[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology01 natural sciencesHardnesslaw.inventionCorrosionChemical engineeringlaw[ CHIM.MATE ] Chemical Sciences/Material chemistry0103 physical sciencesMaterials ChemistryCeramics and Composites0210 nano-technology
researchProduct

Positron trapping defects in free-volume investigation of Ge–Ga–S–CsCl glasses

2016

Abstract Evolution of free-volume positron trapping defects caused by crystallization process in (80GeS 2 –20Ga 2 S 3 ) 100−х (СsCl) x , 0 ≤ x ≤ 15 chalcogenide-chalcohalide glasses was studied by positron annihilation lifetime technique. It is established that CsCl additives in Ge–Ga–S glassy matrix transform defect-related component spectra, indicating that the agglomeration of free-volume voids occurs in initial and crystallized (80GeS 2 –20Ga 2 S 3 ) 100−х (СsCl) x , 0 ≤ x ≤ 10 glasses. Void fragmentation in (80GeS 2 –20Ga 2 S 3 ) 85 (СsCl) 15 glass can be associated with loosing of their inner structure. Full crystallization in each of these glasses corresponds to the formation of defe…

010302 applied physicsVoid (astronomy)RadiationMaterials scienceAnalytical chemistryChalcogenide glassMineralogy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesPositron trappingSpectral linelaw.inventionAbsorption edgeFragmentation (mass spectrometry)law0103 physical sciencesCrystallization0210 nano-technologyInstrumentationPositron annihilationRadiation Measurements
researchProduct

Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm

2008

International audience; The aim of this work is to study different compositions in the Ga-Ge-Sb-S system for the definition of two compositions compatible with the elaboration of a single-mode fiber at the 1.55 μm telecom wavelength. The variations of the glass transition temperature (Tg), the dilatation coefficient (α) and the refractive index (n) have been studied for two glasses series: GaxGe25−xSb10S65 (series 1), Ga5Ge25−xSb10S60+x (series 2). This study has lead to the choice of the Ga4Ge21Sb10S65 composition as clad glass for the preparation of the single-mode fiber and Ga5Ge20Sb10S65 composition as the core. The discrepancies for the studied parameters between the core and clad comp…

A. ChalcogenidesMaterials scienceChalcogenideA. GlassesAnalytical chemistryMineralogy02 engineering and technology01 natural sciences010309 opticschemistry.chemical_compound0103 physical sciencesGeneral Materials ScienceFiberD. Optical propertiesMechanical EngineeringSingle-mode optical fiber[CHIM.MATE]Chemical Sciences/Material chemistryComposition (combinatorics)021001 nanoscience & nanotechnologyCondensed Matter PhysicsCore (optical fiber)WavelengthA. Optical materialschemistryMechanics of Materials[ CHIM.MATE ] Chemical Sciences/Material chemistry0210 nano-technologyGlass transitionRefractive index
researchProduct

Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources

2010

Made available in DSpace on 2013-08-28T14:12:29Z (GMT). No. of bitstreams: 1 WOS000285749500124.pdf: 1017839 bytes, checksum: f517fd8ef33fd56d66b9ccda9dc4d0f3 (MD5) Made available in DSpace on 2013-09-30T19:22:53Z (GMT). No. of bitstreams: 2 WOS000285749500124.pdf: 1017839 bytes, checksum: f517fd8ef33fd56d66b9ccda9dc4d0f3 (MD5) WOS000285749500124.pdf.txt: 33157 bytes, checksum: 1ca2ac713bf6024674249abf58520bcb (MD5) Previous issue date: 2010-12-06 Submitted by Vitor Silverio Rodrigues (vitorsrodrigues@reitoria.unesp.br) on 2014-05-20T15:34:00Z No. of bitstreams: 2 WOS000285749500124.pdf: 1017839 bytes, checksum: f517fd8ef33fd56d66b9ccda9dc4d0f3 (MD5) WOS000285749500124.pdf.txt: 33157 bytes,…

All-silica fiberPHOSFOSOptical fiberMaterials scienceInfrared RaysChalcogenide glass02 engineering and technologySulfides01 natural sciencesArsenicalslaw.invention010309 opticsOpticsZero-dispersion wavelengthlaw0103 physical sciencesFiber Optic TechnologyLightingMiniaturizationbusiness.industryMicrostructured optical fiber[CHIM.MATE]Chemical Sciences/Material chemistryEquipment Design021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsEquipment Failure Analysis[ CHIM.MATE ] Chemical Sciences/Material chemistryChalcogensGlass0210 nano-technologybusinessHard-clad silica optical fiberPhotonic-crystal fiber
researchProduct

Preparation and Characterization of P2 BCh Ring Systems (Ch=S, Se) and Their Reactivity with N-Heterocyclic Carbenes

2018

Four-membered rings with a P2BCh core (Ch = S, Se) have been synthesized via reaction of phosphinidene chalcogenide (Ar*P=Ch) and phosphaborene (Mes*P=BNR2). The mechanistic pathways towards these rings are explained by detailed computational work that confirmed the preference for the formation of P–P, not P–B, bonded systems, which seems counterintuitive given that both phosphorus atoms contain bulky ligands. The reactivity of the newly synthesized heterocycles, as well as that of the known (RPCh)n rings (n = 2, 3), was probed by the addition of Nheterocyclic carbenes, which revealed that all investigated compounds can act as sources of low-coordinate phosphorus species. peerReviewed

BOND COVALENT RADIIChalcogenidePHOSPHINIDENE ADDUCTSSULFURchemistry.chemical_element010402 general chemistryRing (chemistry)ION ABSTRACTION01 natural sciencesMedicinal chemistryCatalysischemistry.chemical_compoundELEMENTSmain-group heterocyclesReactivity (chemistry)N-heterocyclic carbenesMETHYLENEPHOSPHINEta116epäorgaaniset yhdisteetphosphinidene chalcogenidesheterocycleskemiallinen synteesiphosphaborenes010405 organic chemistryPhosphorusOrganic ChemistryGeneral ChemistryREAGENT0104 chemical sciencesCharacterization (materials science)PHOSPHORUSchemistryPhosphinideneinorganic compoundsSULFURIZATIONchemical synthesisX-RAY-STRUCTUREChemistry - A European Journal
researchProduct

Mid-infrared supercontinuum generation in chalcogenide and telluride fibers for sensor devices

2019

This thesis reports on the progress made during my PhD concerning supercontinuum generation and its application in two types of materials: chalcogenide and tellurite glasses. Concerning the chalcogenide axis, two new arsenic-free compositions are developed: Ge20Se60Te20 and Ge20Se70Te10. Thermal and optical properties of these two glasses are studied and two types of fibers are manufactured: a step-index fiber and a suspended core fiber. The generation of supercontinuum in these two fibres, pumped by an optical parametric amplifier, gives competitive results compared to the current state of the art of supercontinuum generation in chalcogenide fibres. Supercontinuums widening between 2 and 1…

CapteursTelluriteChalcogénuresTelluritesSensors[CHIM.OTHE] Chemical Sciences/OtherChalcogenideFibres Optiques[CHIM.OTHE]Chemical Sciences/OtherSupercontinuumInfraredInfrarougeOptical Fibers
researchProduct

ChemInform Abstract: Syntheses, Structures, and Properties of New Quaternary Gold-Chalcogenides: K2Au2Ge2S6, K2Au2Sn2Se6, and Cs2Au2SnS4.

2010

Chalcogenchemistry.chemical_compoundChemistryInorganic chemistryGeneral MedicineQuaternaryAlkali metalGold chalcogenidesChemInform
researchProduct

IF-ReS2 with Covalently Linked Porphyrin Antennae

2010

The preparation of inorganic and organic hybrid materials, of metals or semiconductor systems which are functionalized with functional molecules to fabricate devices — nanotechnology — is currently an area of intense activity in both fundamental science and applied science on an international scale. Principally, nanotechnology aims at manipulating atoms, molecules, and nanosize particles in a precise and controlled manner in order to build materials with a fundamentally new organization and novel properties. The embryonic stage of nanotechnology is atomic assembly, whereas the mature form of nanotechnology will be molecular assembly to make nano-building blocks for the design of nanocomposi…

Chalcogenchemistry.chemical_compoundFullereneChemistryChalcogenideMoleculeNanoparticleSurface modificationNanotechnologyGeneral ChemistryHybrid materialNanomaterialsIsrael Journal of Chemistry
researchProduct

Positron Annihilation in IR Transmitting GeS₂-Ga₂S₃ Glasses

2015

Positron annihilation lifetime spectroscopy combined with Doppler broadening of annihilation radiation was applied to study free-volume entities in GeS2-Ga2S3 glasses affected by Ga additions. It is shown that Ga-related void sub-system plays a decisive role in positron trapping process, while the overall density variation is defined mainly by Ge-related sub-system. These results serve as basis for new characterization route for inner free-volume structure of these glasses.

Chalcogenide GlassPositron TrappingFree-Volume EntitiesSolid State Phenomena
researchProduct

The preparation of four- and six-membered chalcogenametallacyclic derivatives of group 4 metallocenes

1989

Abstract Four-membered metallacycles [(RC 5 H 4 ) 2 M(μ-E)] 2 (M = Zr, Hf; 1 , E = Se; 2 , E = S) were obtained by UV irradiation of dialkyl- or diaryl-metallocenes and equimolecular amounts of elemental chalcogen, but this method works only for bulky R groups. A more general route to compounds 1 and 2 involves the reaction of metallocene dichloride with chalcogenide anions. Six-membered metallacyclohexasulfanes (t-BuC 5 H 4 ) 2 MS 5 ( 3 , M = Zr, Hf) are obtained rather than compounds 2 when an excess of sulfur is used in the photolytic experiments, whereas compounds 1 were still formed when an excess of selenium was used. The observed difference is explained in terms of the solubility of …

ChalcogenideOrganic ChemistryInorganic chemistrychemistry.chemical_elementBiochemistryMedicinal chemistrySulfurInorganic ChemistrySolventChalcogenchemistry.chemical_compoundchemistryGroup (periodic table)Materials ChemistryIrradiationPhysical and Theoretical ChemistrySolubilitySeleniumJournal of Organometallic Chemistry
researchProduct