6533b823fe1ef96bd127e10c
RESEARCH PRODUCT
Preparation and Characterization of P2 BCh Ring Systems (Ch=S, Se) and Their Reactivity with N-Heterocyclic Carbenes
Juuso ValjusCameron M. E. GrahamMichael J. CowleyHeikki M. TuononenClément R. P. MilletPaul J. RagognaAmy Pricesubject
BOND COVALENT RADIIChalcogenidePHOSPHINIDENE ADDUCTSSULFURchemistry.chemical_element010402 general chemistryRing (chemistry)ION ABSTRACTION01 natural sciencesMedicinal chemistryCatalysischemistry.chemical_compoundELEMENTSmain-group heterocyclesReactivity (chemistry)N-heterocyclic carbenesMETHYLENEPHOSPHINEta116epäorgaaniset yhdisteetphosphinidene chalcogenidesheterocycleskemiallinen synteesiphosphaborenes010405 organic chemistryPhosphorusOrganic ChemistryGeneral ChemistryREAGENT0104 chemical sciencesCharacterization (materials science)PHOSPHORUSchemistryPhosphinideneinorganic compoundsSULFURIZATIONchemical synthesisX-RAY-STRUCTUREdescription
Four-membered rings with a P2BCh core (Ch = S, Se) have been synthesized via reaction of phosphinidene chalcogenide (Ar*P=Ch) and phosphaborene (Mes*P=BNR2). The mechanistic pathways towards these rings are explained by detailed computational work that confirmed the preference for the formation of P–P, not P–B, bonded systems, which seems counterintuitive given that both phosphorus atoms contain bulky ligands. The reactivity of the newly synthesized heterocycles, as well as that of the known (RPCh)n rings (n = 2, 3), was probed by the addition of Nheterocyclic carbenes, which revealed that all investigated compounds can act as sources of low-coordinate phosphorus species. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2018-01-01 | Chemistry - A European Journal |