0000000000162584
AUTHOR
Paul J. Ragogna
Phosphorus-Chalcogen Ring Expansion and Metal Coordination
The reactivity of 4-membered (RPCh)2 rings (Ch = S, Se) that contain phosphorus in the +3 oxidation state is reported. These compounds undergo ring expansion to (RPCh)3 with the addition of a Lewis base. The 6-membered rings were found to be more stable than the 4-membered precursors, and the mechanism of their formation was investigated experimentally and by density functional theory calculations. The computational work identified two plausible mechanisms involving a phosphinidene chalcogenide intermediate, either as a free species or stabilized by a suitable base. Both the 4- and 6-membered rings were found to react with coinage metals, giving the same products: (RPCh)3 rings bound to the…
Preparation and Characterization of P2 BCh Ring Systems (Ch=S, Se) and Their Reactivity with N-Heterocyclic Carbenes
Four-membered rings with a P2BCh core (Ch = S, Se) have been synthesized via reaction of phosphinidene chalcogenide (Ar*P=Ch) and phosphaborene (Mes*P=BNR2). The mechanistic pathways towards these rings are explained by detailed computational work that confirmed the preference for the formation of P–P, not P–B, bonded systems, which seems counterintuitive given that both phosphorus atoms contain bulky ligands. The reactivity of the newly synthesized heterocycles, as well as that of the known (RPCh)n rings (n = 2, 3), was probed by the addition of Nheterocyclic carbenes, which revealed that all investigated compounds can act as sources of low-coordinate phosphorus species. peerReviewed
Tellurium(II)-Centered Dications from the Pseudohalide “Te(OTf)2”
Te for two: Supported by pyridine- or carbene-based ligands, tellurium-centered dications are prepared in high yield and include a dicationic tellurium analogue of the recently synthesized "carbodicarbene". The key to accessing these compounds is the isolation of a base-stabilized form of TeOTf(2) (see structure), a new highly electrophilic reagent for tellurium chemistry.
Synthesis, reactivity, and computational analysis of halophosphines supported by dianionic guanidinate ligands.
The reported chemistry and reactivity of guanidinate supported group 15 elements in the +3 oxidation state, particularly phosphorus, is limited when compared to their ubiquity in supporting metallic elements across the periodic table. We have synthesized a series of chlorophosphines utilizing homo- and heteroleptic (dianionic)guanidinates and have completed a comprehensive study of their reactivity. Most notable is the reluctancy of these four-membered rings to form the corresponding N-heterocyclic phosphenium cations, the tendency to chemically and thermally eliminate carbodiimide, and the scarcely observed ring expansion by insertion of a chloro(imino)phosphine into a P-N bond of the P-N-…
Trapping Rare and Elusive Phosphinidene Chalcogenides
Four-membered rings with a P2Ch2 core (Ch=S, Se) and phosphorus in the +3 oxidation state have been synthesized. The utility of these rings as a source of monomeric phosphinidene chalcogenides was probed by the addition of an N-heterocyclic carbene, resulting in a base-stabilized phosphinidene sulfide. Similarly, persistence of the phosphinidene selenide in solution was shown through cycloaddition chemistry with 2,3-dimethylbutadiene at elevated temperatures. The observed reactivity was explained by detailed computational work that established the conditions upon which the P2Ch2 rings can liberate phosphinidene chalcogenides. peerReviewed
CCDC 1569579: Experimental Crystal Structure Determination
Related Article: Cameron M. E. Graham, Juuso Valjus, Taylor E. Pritchard, Paul D. Boyle, Heikki M. Tuononen, Paul J. Ragogna|2017|Inorg.Chem.|56|13500|doi:10.1021/acs.inorgchem.7b02217
CCDC 1573808: Experimental Crystal Structure Determination
Related Article: Paul J. Ragogna, Cameron Graham, Clement Millet, Amy N Price, Juuso Valijus, Michael J Cowley, Heikki Tuononen|2017|Chem.-Eur.J.|24|672|doi:10.1002/chem.201704337
CCDC 1573801: Experimental Crystal Structure Determination
Related Article: Paul J. Ragogna, Cameron Graham, Clement Millet, Amy N Price, Juuso Valijus, Michael J Cowley, Heikki Tuononen|2017|Chem.-Eur.J.|24|672|doi:10.1002/chem.201704337
CCDC 1573806: Experimental Crystal Structure Determination
Related Article: Paul J. Ragogna, Cameron Graham, Clement Millet, Amy N Price, Juuso Valijus, Michael J Cowley, Heikki Tuononen|2017|Chem.-Eur.J.|24|672|doi:10.1002/chem.201704337
CCDC 1573805: Experimental Crystal Structure Determination
Related Article: Paul J. Ragogna, Cameron Graham, Clement Millet, Amy N Price, Juuso Valijus, Michael J Cowley, Heikki Tuononen|2017|Chem.-Eur.J.|24|672|doi:10.1002/chem.201704337
CCDC 1573807: Experimental Crystal Structure Determination
Related Article: Paul J. Ragogna, Cameron Graham, Clement Millet, Amy N Price, Juuso Valijus, Michael J Cowley, Heikki Tuononen|2017|Chem.-Eur.J.|24|672|doi:10.1002/chem.201704337
CCDC 1573804: Experimental Crystal Structure Determination
Related Article: Paul J. Ragogna, Cameron Graham, Clement Millet, Amy N Price, Juuso Valijus, Michael J Cowley, Heikki Tuononen|2017|Chem.-Eur.J.|24|672|doi:10.1002/chem.201704337
CCDC 1573802: Experimental Crystal Structure Determination
Related Article: Paul J. Ragogna, Cameron Graham, Clement Millet, Amy N Price, Juuso Valijus, Michael J Cowley, Heikki Tuononen|2017|Chem.-Eur.J.|24|672|doi:10.1002/chem.201704337
CCDC 1573803: Experimental Crystal Structure Determination
Related Article: Paul J. Ragogna, Cameron Graham, Clement Millet, Amy N Price, Juuso Valijus, Michael J Cowley, Heikki Tuononen|2017|Chem.-Eur.J.|24|672|doi:10.1002/chem.201704337
CCDC 1485222: Experimental Crystal Structure Determination
Related Article: Cameron M. E. Graham, Taylor E. Pritchard, Paul D. Boyle, Juuso Valjus, Heikki M. Tuononen, Paul J. Ragogna|2017|Angew.Chem.,Int.Ed.|56|6236|doi:10.1002/anie.201611196
CCDC 1569581: Experimental Crystal Structure Determination
Related Article: Cameron M. E. Graham, Juuso Valjus, Taylor E. Pritchard, Paul D. Boyle, Heikki M. Tuononen, Paul J. Ragogna|2017|Inorg.Chem.|56|13500|doi:10.1021/acs.inorgchem.7b02217
CCDC 1569577: Experimental Crystal Structure Determination
Related Article: Cameron M. E. Graham, Juuso Valjus, Taylor E. Pritchard, Paul D. Boyle, Heikki M. Tuononen, Paul J. Ragogna|2017|Inorg.Chem.|56|13500|doi:10.1021/acs.inorgchem.7b02217
CCDC 1485220: Experimental Crystal Structure Determination
Related Article: Cameron M. E. Graham, Taylor E. Pritchard, Paul D. Boyle, Juuso Valjus, Heikki M. Tuononen, Paul J. Ragogna|2017|Angew.Chem.,Int.Ed.|56|6236|doi:10.1002/anie.201611196
CCDC 1569578: Experimental Crystal Structure Determination
Related Article: Cameron M. E. Graham, Juuso Valjus, Taylor E. Pritchard, Paul D. Boyle, Heikki M. Tuononen, Paul J. Ragogna|2017|Inorg.Chem.|56|13500|doi:10.1021/acs.inorgchem.7b02217
CCDC 1485223: Experimental Crystal Structure Determination
Related Article: Cameron M. E. Graham, Taylor E. Pritchard, Paul D. Boyle, Juuso Valjus, Heikki M. Tuononen, Paul J. Ragogna|2017|Angew.Chem.,Int.Ed.|56|6236|doi:10.1002/anie.201611196
CCDC 1569582: Experimental Crystal Structure Determination
Related Article: Cameron M. E. Graham, Juuso Valjus, Taylor E. Pritchard, Paul D. Boyle, Heikki M. Tuononen, Paul J. Ragogna|2017|Inorg.Chem.|56|13500|doi:10.1021/acs.inorgchem.7b02217
CCDC 1569580: Experimental Crystal Structure Determination
Related Article: Cameron M. E. Graham, Juuso Valjus, Taylor E. Pritchard, Paul D. Boyle, Heikki M. Tuononen, Paul J. Ragogna|2017|Inorg.Chem.|56|13500|doi:10.1021/acs.inorgchem.7b02217
CCDC 1485221: Experimental Crystal Structure Determination
Related Article: Cameron M. E. Graham, Taylor E. Pritchard, Paul D. Boyle, Juuso Valjus, Heikki M. Tuononen, Paul J. Ragogna|2017|Angew.Chem.,Int.Ed.|56|6236|doi:10.1002/anie.201611196