0000000000502544
AUTHOR
Tewodros Weldebirhan Arega
Leveraging Uncertainty Estimates to Improve Segmentation Performance in Cardiac MR
In medical image segmentation, several studies have used Bayesian neural networks to segment and quantify the uncertainty of the images. These studies show that there might be an increased epistemic uncertainty in areas where there are semantically and visually challenging pixels. The uncertain areas of the image can be of a great interest as they can possibly indicate the regions of incorrect segmentation. To leverage the uncertainty information, we propose a segmentation model that incorporates the uncertainty into its learning process. Firstly, we generate the uncertainty estimate (sample variance) using Monte-Carlo dropout during training. Then we incorporate it into the loss function t…
Leveraging Uncertainty Estimates to Improve Segmentation Performance in Cardiac MR
International audience; In medical image segmentation, several studies have used Bayesian neural networks to segment and quantify the uncertainty of the images. These studies show that there might be an increased epistemic uncertainty in areas where there are semantically and visually challenging pixels. The uncertain areas of the image can be of a great interest as they can possibly indicate the regions of incorrect segmentation. To leverage the uncertainty information, we propose a segmentation model that incorporates the uncertainty into its learning process. Firstly, we generate the uncertainty estimate (sample variance) using Monte-Carlo dropout during training. Then we incorporate it …
Automatic Quality Assessment of Cardiac MR Images with Motion Artefacts using Multi-task Learning and K-Space Motion Artefact Augmentation
The movement of patients and respiratory motion during MRI acquisition produce image artefacts that reduce the image quality and its diagnostic value. Quality assessment of the images is essential to minimize segmentation errors and avoid wrong clinical decisions in the downstream tasks. In this paper, we propose automatic multi-task learning (MTL) based classification model to detect cardiac MR images with different levels of motion artefact. We also develop an automatic segmentation model that leverages k-space based motion artefact augmentation (MAA) and a novel compound loss that utilizes Dice loss with a polynomial version of cross-entropy loss (PolyLoss) to robustly segment cardiac st…
Using Polynomial Loss and Uncertainty Information for Robust Left Atrial and Scar Quantification and Segmentation
Automatic and accurate segmentation of the left atrial (LA) cavity and scar can be helpful for the diagnosis and prognosis of patients with atrial fibrillation. However, automating the segmentation can be difficult due to the poor image quality, variable LA shapes, and small discrete regions of LA scars. In this paper, we proposed a fully-automatic method to segment LA cavity and scar from Late Gadolinium Enhancement (LGE) MRIs. For the loss functions, we propose two different losses for each task. To enhance the segmentation of LA cavity from the multicenter dataset, we present a hybrid loss that leverages Dice loss with a polynomial version of cross-entropy loss (PolyCE). We also utilize …