0000000000511293

AUTHOR

Kristelle Roidot

Parallel Computing for the study of the focusing Davey-Stewartson II equation in semiclassical limit

The asymptotic description of the semiclassical limit of nonlinear Schrödinger equations is a major challenge with so far only scattered results in 1 + 1 dimensions. In this limit, solutions to the NLS equations can have zones of rapid modulated oscillations or blow up. We numerically study in this work the Davey-Stewartson system, a 2 + 1 dimensional nonlinear Schrödinger equation with a nonlocal term, by using parallel computing. This leads to the first results on the semiclassical limit for the Davey-Stewartson equations.

research product

Numerical study of shock formation in the dispersionless Kadomtsev-Petviashvili equation and dispersive regularizations

The formation of singularities in solutions to the dispersionless Kadomtsev-Petviashvili (dKP) equation is studied numerically for different classes of initial data. The asymptotic behavior of the Fourier coefficients is used to quantitatively identify the critical time and location and the type of the singularity. The approach is first tested in detail in 1+1 dimensions for the known case of the Hopf equation, where it is shown that the break-up of the solution can be identified with prescribed accuracy. For dissipative regularizations of this shock formation as the Burgers' equation and for dispersive regularizations as the Korteweg-de Vries equation, the Fourier coefficients indicate as …

research product

Etude numérique d'équations aux dérivées partielles non linéaires et dispersives

Numerical analysis becomes a powerful resource in the study of partial differential equations (PDEs), allowing to illustrate existing theorems and find conjectures. By using sophisticated methods, questions which seem inaccessible before, like rapid oscillations or blow-up of solutions can be addressed in an approached way. Rapid oscillations in solutions are observed in dispersive PDEs without dissipation where solutions of the corresponding PDEs without dispersion present shocks. To solve numerically these oscillations, the use of efficient methods without using artificial numerical dissipation is necessary, in particular in the study of PDEs in some dimensions, done in this work. As stud…

research product