0000000000511313

AUTHOR

Alexander S. Sakharov

showing 6 related works from this author

Synchrotron Radiation from the Crab Nebula Discriminates between Models of Space-Time Foam

2003

It has been argued by Jacobson, Liberati and Mattingly that synchrotron radiation from the Crab Nebula imposes a stringent constraint on any modification of the dispersion relations of the electron that might be induced by quantum gravity. We supplement their analysis by deriving the spectrum of synchrotron radiation from the coupling of an electrically-charged particle to an external magnetic fields in the presence of quantum-gravity effects of the general form $(E/M_{QG})^\alpha$. We find that the synchrotron constraint from the Crab Nebula practically excludes $\alpha \lsim 1.74$ for $M_{QG} \sim m_P = 1.2 \times 10^{19}$ GeV. On the other hand, this analysis does not constrain any modif…

PhysicsHigh Energy Physics - TheoryAstrophysics and AstronomyPhotonAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Synchrotron radiationFOS: Physical sciencesAstronomy and AstrophysicsElectronGeneral Relativity and Quantum Cosmology (gr-qc)AstrophysicsSynchrotronGeneral Relativity and Quantum CosmologyComputational physicslaw.inventionNuclear physicsHigh Energy Physics - PhenomenologyCrab NebulaHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)lawDispersion relationQuantum gravityEquivalence principle
researchProduct

Limits on neutrino Lorentz violation from multimessenger observations of TXS 0506+056

2019

The observation by the IceCube Collaboration of a high-energy ($E \gtrsim 200$ TeV) neutrino from the direction of the blazar TXS 0506+056 and the coincident observations of enhanced $\gamma$-ray emissions from the same object by MAGIC and other experiments can be used to set stringent constraints on Lorentz violation in the propagation of neutrinos that is linear in the neutrino energy: $\Delta v = - E/M_1$, where $\Delta v$ is the deviation from the velocity of light, and $M_1$ is an unknown high energy scale to be constrained by experiment. Allowing for a difference in neutrino and photon propagation times of $\sim 10$ days, we find that $M_1 \gtrsim 3 \times 10^{16}$ GeV. This improves …

High Energy Physics - TheoryNuclear and High Energy PhysicsHigh energyParticle physicsAstrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)Lorentz transformationgr-qcAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesComputer Science::Digital LibrariesGeneral Relativity and Quantum CosmologyIceCubesymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)Coincident0103 physical sciences010306 general physicsBlazarParticle Physics - PhenomenologyHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HEMultimessenger010308 nuclear & particles physicsGeneral Relativity and Cosmologyhep-thHigh Energy Physics::PhenomenologyLorentz violationGamma rayhep-phlcsh:QC1-999High Energy Physics - PhenomenologyPhoton propagationHigh Energy Physics - Theory (hep-th)Astrophysical neutrinosVelocity of lightsymbolsastro-ph.COHigh Energy Physics::ExperimentNeutrinoTXS 0506+056Astrophysics - High Energy Astrophysical PhenomenaParticle Physics - Theorylcsh:PhysicsBlazarsAstrophysics - Cosmology and Nongalactic AstrophysicsPhysics Letters
researchProduct

Robust constraint on Lorentz violation using Fermi-LAT gamma-ray burst data

2018

Models of quantum gravity suggest that the vacuum should be regarded as a medium with quantum structure that may have non-trivial effects on photon propagation, including the violation of Lorentz invariance. Fermi Large Area Telescope (LAT) observations of gamma-ray bursts (GRBs) are sensitive probes of Lorentz invariance, via studies of energy-dependent timing shifts in their rapidly-varying photon emissions. In this paper we analyze the Fermi-LAT measurements of high-energy gamma rays from GRBs with known redshifts, allowing for the possibility of energy-dependent variations in emission times at the sources as well as a possible non-trivial refractive index in vacuo for photons. We use st…

Astrophysics and AstronomyPhotongr-qcAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)AstrophysicsLorentz covariance01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesSensitivity (control systems)010306 general physicsParticle Physics - PhenomenologyHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HE010308 nuclear & particles physicsGeneral Relativity and CosmologyGamma rayhep-phRedshiftHigh Energy Physics - PhenomenologyAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burstEnergy (signal processing)Fermi Gamma-ray Space Telescope
researchProduct

Search for lepton-flavor-violating decays of the Z boson into a τ lepton and a light lepton with the ATLAS detector

2018

Direct searches for lepton flavor violation in decays of the Z boson with the ATLAS detector at the LHC are presented. Decays of the Z boson into an electron or muon and a hadronically decaying r l ...

Condensed Matter::Quantum GasesPhysicsParticle physicsMuonLarge Hadron ColliderPhysics::Instrumentation and Detectors010308 nuclear & particles physicsAtlas (topology)Atlas detectorHigh Energy Physics::PhenomenologyElectron01 natural sciences0103 physical sciencesHigh Energy Physics::ExperimentParticle physics experiments010306 general physicsFlavorLeptonPhysical Review D
researchProduct

Search for lepton-flavor violation in different-flavor, high-mass final states in pp collisions at s=13  TeV with the ATLAS detector

2018

A search is performed for a heavy particle decaying into different-flavor, dilepton pairs (e mu, e tau or mu tau), using 36.1 fb(-1) of proton-proton collision data at root s = 13 TeV collected in ...

PhysicsParticle physics010308 nuclear & particles physicsAtlas detectorNuclear TheoryHigh Energy Physics::PhenomenologySupersymmetry01 natural sciences0103 physical sciencesHigh massPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentHeavy particleNuclear Experiment010306 general physicsFlavorLeptonPhysical Review D
researchProduct

Space-Time Foam may Violate the Principle of Equivalence

2003

The interactions of different particle species with the foamy space-time fluctuations expected in quantum gravity theories may not be universal, in which case different types of energetic particles may violate Lorentz invariance by varying amounts, violating the equivalence principle. We illustrate this possibility in two different models of space-time foam based on D-particle fluctuations in either flat Minkowski space or a stack of intersecting D-branes. Both models suggest that Lorentz invariance could be violated for energetic particles that do not carry conserved charges, such as photons, whereas charged particles such electrons would propagate in a Lorentz-inavariant way. The D-brane …

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsGeneral Relativity and CosmologySpace timeAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsElectronGeneral Relativity and Quantum Cosmology (gr-qc)Lorentz covarianceAstrophysicsGeneral Relativity and Quantum CosmologyAtomic and Molecular Physics and OpticsCharged particleGluonHigh Energy Physics - PhenomenologyTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Minkowski spaceQuantum gravityPhenomenology (particle physics)
researchProduct