0000000000511766

AUTHOR

Pengju Jiang

0000-0001-7156-7264

showing 6 related works from this author

Structure of three tandem filamin domains reveals auto-inhibition of ligand binding

2007

Human filamins are large actin-crosslinking proteins composed of an N-terminal actin-binding domain followed by 24 Ig-like domains (IgFLNs), which interact with numerous transmembrane receptors and cytosolic signaling proteins. Here we report the 2.5 A resolution structure of a three-domain fragment of human filamin A (IgFLNa19-21). The structure reveals an unexpected domain arrangement, with IgFLNa20 partially unfolded bringing IgFLNa21 into close proximity to IgFLNa19. Notably the N-terminus of IgFLNa20 forms a beta-strand that associates with the CD face of IgFLNa21 and occupies the binding site for integrin adhesion receptors. Disruption of this IgFLNa20-IgFLNa21 interaction enhances fi…

Models MolecularIntegrinsanimal structuresintegrinFilaminsIntegrinmacromolecular substancesPlasma protein bindingLigandsFilaminBiochemistryArticleGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesFilamin bindingContractile ProteinsHumansBinding siteCell adhesionCytoskeletonMolecular BiologyX-ray crystallography030304 developmental biologyIntegrin binding0303 health sciencesGeneral Immunology and MicrobiologybiologyGeneral NeuroscienceMicrofilament Proteins030302 biochemistry & molecular biologycell adhesioncytoskeletonfilaminProtein Structure TertiaryCell biologybiology.proteinProtein BindingThe EMBO Journal
researchProduct

The C-terminal rod 2 fragment of filamin A forms a compact structure that can be extended

2012

Filamins are large proteins that cross-link actin filaments and connect to other cellular components. The C-terminal rod 2 region of FLNa (filamin A) mediates dimerization and interacts with several transmembrane receptors and intracellular signalling adaptors. SAXS (small-angle X-ray scattering) experiments were used to make a model of a six immunoglobulin-like domain fragment of the FLNa rod 2 (domains 16–21). This fragment had a surprising three-branched structural arrangement, where each branch was made of a tightly packed two-domain pair. Peptides derived from transmembrane receptors and intracellular signalling proteins induced a more open structure of the six domain fragment. Mutagen…

Models Moleculargenetics [Receptors Dopamine D3]metabolism [Recombinant Proteins]Protein Conformationgenetics [Antigens CD18]chemistry [Recombinant Proteins]Plasma protein bindingCrystallography X-RayLigandsFilaminmetabolism [Antigens CD18]metabolism [Cytoskeletal Proteins]BiochemistryfilaminsContractile ProteinsProtein structuremetabolism [Peptide Fragments]FLNAchemistry [Antigens CD18]genetics [Cell Adhesion Molecules]Small-angle X-ray scatteringMicrofilament Proteinsgenetics [Contractile Proteins]Recombinant Proteinschemistry [Receptors Dopamine D3]FBLIM1 protein humanddc:540Domain (ring theory)DimerizationProtein Bindingchemistry [Contractile Proteins]FilaminsAntigens CD18metabolism [Cell Adhesion Molecules]BiologyScattering Small Anglemetabolism [Receptors Dopamine D3]Humanschemistry [Microfilament Proteins]Protein Interaction Domains and Motifsmetabolism [Mutant Proteins]DRD3 protein humanMolecular Biologymetabolism [Contractile Proteins]Actingenetics [Cytoskeletal Proteins]Cryoelectron MicroscopyMutagenesista1182Receptors Dopamine D3metabolism [Microfilament Proteins]Cell Biologychemistry [Cell Adhesion Molecules]genetics [Peptide Fragments]Peptide FragmentsCytoskeletal ProteinsCrystallographychemistry [Mutant Proteins]chemistry [Peptide Fragments]CD18 AntigensBiophysicschemistry [Cytoskeletal Proteins]Mutant Proteinsgenetics [Microfilament Proteins]Cell Adhesion MoleculesBiochemical Journal
researchProduct

Model of a six immunoglobulin-like domain fragment of filamin A (16-21) built using residual dipolar couplings.

2012

Filamins are actin-binding proteins that participate in a wide range of cell functions, including cell morphology, locomotion, membrane protein localization, and intracellular signaling. The three filamin isoforms found in humans, filamins A, B, and C, are highly homologous, and their roles are partly complementary. In addition to actin, filamins interact with dozens of other proteins that have roles as membrane receptors and channels, enzymes, signaling intermediates, and transcription factors. Filamins are composed of an N-terminal actin-binding domain and 24 filamin-type immunoglobulin-like domains (FLN) that form tail-to-tail dimers with their C-terminal FLN domain. Many of the filamin …

Gene isoformModels Molecularanimal structuresMagnetic Resonance SpectroscopyProtein ConformationFilaminsIntegrinBiomolecular structuremacromolecular substances010402 general chemistryFilaminCell morphologyCrystallography X-Ray01 natural sciencesBiochemistryCatalysis03 medical and health sciencesColloid and Surface ChemistryContractile ProteinsHumansTranscription factorImmunoglobulin FragmentsActin030304 developmental biologychemistry.chemical_classification0303 health sciencesbiologyChemistryMicrofilament ProteinsGeneral Chemistry0104 chemical sciencesCell biologybody regionsbiology.proteinGlycoproteinJournal of the American Chemical Society
researchProduct

Assembly of a Filamin Four-domain Fragment and the Influence of Splicing Variant-1 on the Structure

2011

Filamins are scaffold proteins that bind to various proteins, including the actin cytoskeleton, integrin adhesion receptors, and adaptor proteins such as migfilin. Alternative splicing of filamin, largely constructed from 24 Ig-like domains, is thought to have a role in regulating its interactions with other proteins. The filamin A splice variant-1 (FLNa var-1) lacks 41 amino acids, including the last β-strand of domain 19, FLNa(19), and the first β-strand of FLNa(20) that was previously shown to mask a key binding site on FLNa(21). Here, we present a structural characterization of domains 18-21, FLNa(18-21), in the FLNa var-1 as well as its nonspliced counterpart. A model of nonspliced FLN…

Models MolecularFilaminsProtein domainBiologyFilaminBiochemistryProtein Structure SecondaryStructure-Activity RelationshipContractile ProteinsProtein structureHumansFLNANuclear Magnetic Resonance BiomolecularMolecular BiologyMicrofilament ProteinsAlternative splicingta1182Signal transducing adaptor proteinCell BiologyActin cytoskeletonMolecular biologyProtein Structure TertiaryCell biologyAlternative SplicingProtein Structure and FoldingRNA splicingJournal of Biological Chemistry
researchProduct

The molecular basis of filamin binding to integrins and competition with talin.

2006

The ability of adhesion receptors to transmit biochemical signals and mechanical force across cell membranes depends on interactions with the actin cytoskeleton. Filamins are large, actin-crosslinking proteins that connect multiple transmembrane and signaling proteins to the cytoskeleton. Here, we describe the high-resolution structure of an interface between filamin A and an integrin adhesion receptor. When bound, the integrin beta cytoplasmic tail forms an extended beta strand that interacts with beta strands C and D of the filamin immunoglobulin-like domain (IgFLN) 21. This interface is common to many integrins, and we suggest it is a prototype for other IgFLN domain interactions. Notabl…

Models MolecularTalinanimal structuresIntegrin beta ChainsProtein ConformationFilaminsRecombinant Fusion ProteinsIntegrinMolecular Sequence Datamacromolecular substancesPlasma protein bindingFilaminCrystallography X-RayFilamin bindingMiceContractile ProteinsFLNAAnimalsAmino Acid SequenceMolecular BiologyNuclear Magnetic Resonance BiomolecularBinding SitesbiologySequence Homology Amino AcidCalpainMicrofilament ProteinsReproducibility of ResultsCell BiologyActin cytoskeletonCell biologyProtein Structure Tertiarybody regionsIntegrin alpha Mbiology.proteinNIH 3T3 CellsIntegrin beta 6Protein BindingMolecular cell
researchProduct

Structural basis of the migfilin-filamin interaction and competition with integrin beta tails.

2008

A link between sites of cell adhesion and the cytoskeleton is essential for regulation of cell shape, motility, and signaling. Migfilin is a recently identified adaptor protein that localizes at cell-cell and cell-extracellular matrix adhesion sites, where it is thought to provide a link to the cytoskeleton by interacting with the actin cross-linking protein filamin. Here we have used x-ray crystallography, NMR spectroscopy, and protein-protein interaction studies to investigate the molecular basis of migfilin binding to filamin. We report that the N-terminal portion of migfilin can bind all three human filamins (FLNa, -b, or -c) and that there are multiple migfilin-binding sites in FLNa. H…

Models MolecularIntegrin beta ChainsMagnetic Resonance SpectroscopyFilaminsIntegrinMolecular ConformationPlasma protein bindingmacromolecular substancesBiologyFilaminLigandsBiochemistryMiceContractile ProteinsFLNAAnimalsHumansCytoskeletonCell adhesionMolecular BiologyActinCytoskeletonDose-Response Relationship DrugMicrofilament ProteinsMechanisms of Signal TransductionSignal transducing adaptor proteinCell BiologyCell biologyCytoskeletal Proteinsbiology.proteinNIH 3T3 CellsCell Adhesion MoleculesProtein BindingThe Journal of biological chemistry
researchProduct