0000000000512341

AUTHOR

Nicolas Viovy

0000-0002-9197-6417

showing 5 related works from this author

Compensatory water effects link yearly global land CO2 sink changes to temperature

2017

Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems1–3. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales3–14. Here we use empirical models based on eddy covariance data15 and process-based models16,17 to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of…

Carbon dioxide in Earth's atmospheregeographyMultidisciplinarygeography.geographical_feature_category010504 meteorology & atmospheric sciencesMeteorology0208 environmental biotechnologyEddy covarianceCarbon sink[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph]02 engineering and technology15. Life on landAtmospheric sciences01 natural sciencesSink (geography)020801 environmental engineeringCarbon cycle13. Climate action[SDE]Environmental SciencesEnvironmental scienceTerrestrial ecosystemEcosystemTemporal scalesComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesNature
researchProduct

Sources et puits de gaz à effet de serre (CO2, CH4, N2O) en prairie pâturée et stratégies de réduction

2004

National audience

[SDV] Life Sciences [q-bio][SDE] Environmental Sciences[SDV]Life Sciences [q-bio][SDE]Environmental Sciences[INFO]Computer Science [cs][SHS] Humanities and Social Sciences[INFO] Computer Science [cs]ComputingMilieux_MISCELLANEOUS[SHS]Humanities and Social Sciences
researchProduct

Water-use efficiency and transpiration across European forests during the Anthropocene

2015

Considering the combined effects of CO2 fertilization and climate change drivers on plant physiology leads to a modest increase in simulated European forest transpiration in spite of the effects of CO2-induced stomatal closure. The Earth’s carbon and hydrologic cycles are intimately coupled by gas exchange through plant stomata1,2,3. However, uncertainties in the magnitude4,5,6 and consequences7,8 of the physiological responses9,10 of plants to elevated CO2 in natural environments hinders modelling of terrestrial water cycling and carbon storage11. Here we use annually resolved long-term δ13C tree-ring measurements across a European forest network to reconstruct the physiologically driven r…

hiilidioksidiStomatal conductancehiili[SDE.MCG]Environmental Sciences/Global Changesta1171vesiGrowing seasonClimate changeEnvironmental Science (miscellaneous)Atmospheric sciencestree-ringchemistry.chemical_compoundhydrologinen kiertodioxide[SDV.EE.ECO]Life Sciences [q-bio]/Ecology environment/Ecosystems[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/GeochemistrykasvitilmastoWater cycleWater-use efficiency[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environmentclimateCO2 fertilizationComputingMilieux_MISCELLANEOUSTranspirationHydrologyilmakehäatmospheric CO2elevated CO2[CHIM.ORGA]Chemical Sciences/Organic chemistryGlobal warmingvarastointi15. Life on land[SDE.ES]Environmental Sciences/Environmental and Societygas-exchangerising CO2chemistry13. Climate actionstomatal conductance[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy[SHS.ENVIR]Humanities and Social Sciences/Environmental studiesCarbon dioxideEnvironmental scienceaineiden kiertoSocial Sciences (miscellaneous)carbon-isotope discrimination
researchProduct

Quantifying the spatial extent and intensity of recent extreme drought events in the Amazon rainforest and their impacts on the carbon cycle

2020

Over the last decades, the Amazon rainforest was hit by multiple severe drought events. Here we assess the severity and spatial extent of the extreme drought years 2005, 2010, and 2015/2016 in the Amazon region and their impacts on the carbon cycle. As an indicator of drought stress in the Amazon rainforest, we use the widely applied maximum cumulative water deficit (ΔMCWD). Evaluating an ensemble of ten state-of-the-art precipitation datasets for the Amazon region, we find that the spatial extent of the drought in 2005 ranges from 2.8 to 4.2 (mean = 3.2) million km2 (46–71 % of the Amazon basin, mean = 53 %) where ΔMCWD indicates at le…

Drought stressAmazon rainforestAnomaly (natural sciences)Environmental sciencePrecipitationPhysical geographySpatial extentWater deficitAmazon basinCarbon cycle
researchProduct

Recent extreme drought events in the Amazon rainforest: assessment of different precipitation and evapotranspiration datasets and drought indicators

2022

Over the last decades, the Amazon rainforest has been hit by multiple severe drought events. Here, we assess the severity and spatial extent of the extreme drought years 2005, 2010 and 2015/16 in the Amazon region and their impacts on the regional carbon cycle. As an indicator of drought stress in the Amazon rainforest, we use the widely applied maximum cumulative water deficit (MCWD). Evaluating nine state-of-the-art precipitation datasets for the Amazon region, we find that the spatial extent of the drought in 2005 ranges from 2.2 to 3.0 (mean =2.7) ×106 km2 (37 %–51 % of the Amazon basin, mean =45 %), where MCWD indicates at least moderate drought conditions (relative MCWD anomaly <-0…

[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environmentEcology Evolution Behavior and SystematicsEarth-Surface Processes
researchProduct