0000000000512507
AUTHOR
Hidenori Sonoda
Products of current operators in the exact renormalization group formalism
Given a Wilson action invariant under global chiral transformations, we can construct current composite operators in terms of the Wilson action. The short distance singularities in the multiple products of the current operators are taken care of by the exact renormalization group. The Ward-Takahashi identity is compatible with the finite momentum cutoff of the Wilson action. The exact renormalization group and the Ward-Takahashi identity together determine the products. As a concrete example, we study the Gaussian fixed-point Wilson action of the chiral fermions to construct the products of current operators.
Geometry of the theory space in the exact renormalization group formalism
We consider the theory space as a manifold whose coordinates are given by the couplings appearing in the Wilson action. We discuss how to introduce connections on this theory space. A particularly intriguing connection can be defined directly from the solution of the exact renormalization group (ERG) equation. We advocate a geometric viewpoint that lets us define straightforwardly physically relevant quantities invariant under the changes of a renormalization scheme.
Operator product expansion coefficients in the exact renormalization group formalism
We study how to compute the operator product expansion coefficients in the exact renormalization group formalism. After discussing possible strategies, we consider some examples explicitly, within the $\epsilon$-expansions, for the Wilson-Fisher fixed points of the real scalar theory in $d=4-\epsilon$ dimensions and the Lee-Yang model in $d=6-\epsilon$ dimensions. Finally we discuss how our formalism may be extended beyond perturbation theory.