Comparative genome-wide-association mapping identifies common loci controlling root system architecture and resistance to Aphanomyces euteiches in pea
BAP GEAPSI INRA; International audience; Plant architecture can contribute to decrease plant susceptibility to pathogens by favoring mechanisms leading to infection escape or increased tolerance. Combining genetic resistance with architectural traits that can negatively impact disease development is thus a strategy of great interest to reduce epidemics. Until now, most strategies exploiting plant architecture have focused on the aerial parts of plants. Few studies have been done on the identification of root system architecture (RSA) traits limiting root disease development and even less on their use in breeding. Aphanomyces euteiches, a soil-borne pathogen infecting roots, is a major limit…
Arginase induction represses gall development during clubroot infection in Arabidopsis.
Arginase induction can play a defensive role through the reduction of arginine availability for phytophageous insects. Arginase activity is also induced during gall growth caused by Plasmodiophora brassicae infection in roots of Arabidopsis thaliana; however, its possible role in this context has been unclear. We report here that the mutation of the arginase-encoding gene ARGAH2 abrogates clubroot-induced arginase activity and results in enhanced gall size in infected roots, suggesting that arginase plays a defensive role. Induction of arginase activity in infected roots was impaired in the jar1 mutant, highlighting a link between the arginase response to clubroot and jasmonate signaling. C…