0000000000515186
AUTHOR
J. Widjajakusuma
Quantitative prediction of effective material properties of heterogeneous media
Effective electrical conductivity and electrical permittivity of water-saturated natural sandstones are evaluated on the basis of local porosity theory (LPT). In contrast to earlier methods, which characterize the underlying microstructure only through the volume fraction, LPT incorporates geometric information about the stochastic microstructure in terms of local porosity distribution and local percolation probabilities. We compare the prediction of LPT and of traditional effective medium theory with the exact results. The exact results for the conductivity and permittivity are obtained by solving the microscopic mixed boundary value problem for the Maxwell equations in the quasistatic app…
Exact and approximate calculations for the conductivity of sandstones
We analyze a three-dimensional pore space reconstruction of Fontainebleau sandstone and calculate from it the eective conductivity using local porosity theory. We compare this result with an exact calculation of the eective conductivity that solves directly the disordered Laplace equation. The prediction of local porosity theory is in good quantitative agreement with the exact result. c 1999 Elsevier Science B.V. All rights reserved.
Quantitative comparison of mean field mixing laws for conductivity and dielectric constants of porous media
Abstract Exact numerical solution of the electrostatic disordered potential problem is carried out for four fully discretized three-dimensional experimental reconstructions of sedimentary rocks. The measured effective macroscopic dielectric constants and electrical conductivities are compared with parameter-free predictions from several mean field type theories. All these theories give agreeable results for low contrast between the media. Predictions from local porosity theory, however, match for the entire range of contrast.