0000000000515194

AUTHOR

B. Oréfice-okamoto

showing 2 related works from this author

The Bruce–Roberts Number of A Function on A Hypersurface with Isolated Singularity

2020

AbstractLet $(X,0)$ be an isolated hypersurface singularity defined by $\phi \colon ({\mathbb{C}}^n,0)\to ({\mathbb{C}},0)$ and $f\colon ({\mathbb{C}}^n,0)\to{\mathbb{C}}$ such that the Bruce–Roberts number $\mu _{BR}(f,X)$ is finite. We first prove that $\mu _{BR}(f,X)=\mu (f)+\mu (\phi ,f)+\mu (X,0)-\tau (X,0)$, where $\mu $ and $\tau $ are the Milnor and Tjurina numbers respectively of a function or an isolated complete intersection singularity. Second, we show that the logarithmic characteristic variety $LC(X,0)$ is Cohen–Macaulay. Both theorems generalize the results of a previous paper by some of the authors, in which the hypersurface $(X,0)$ was assumed to be weighted homogeneous.

LogarithmGeneral Mathematics010102 general mathematicsComplete intersection010103 numerical & computational mathematicsFunction (mathematics)Isolated singularity01 natural sciencesCombinatoricsHypersurfaceSingularityHomogeneous0101 mathematicsCharacteristic varietyMathematicsThe Quarterly Journal of Mathematics
researchProduct

Families of ICIS with constant total Milnor number

2021

We show that a family of isolated complete intersection singularities (ICIS) with constant total Milnor number has no coalescence of singularities. This extends a well-known result of Gabriélov, Lazzeri and Lê for hypersurfaces. We use A’Campo’s theorem to see that the Lefschetz number of the generic monodromy of the ICIS is zero when the ICIS is singular. We give a pair applications for families of functions on ICIS which extend also some known results for functions on a smooth variety.

Pure mathematicsMonodromyGeneral MathematicsComplete intersectionGravitational singularityAstrophysics::Earth and Planetary AstrophysicsCoalescence (chemistry)Constant (mathematics)MathematicsMilnor numberInternational Journal of Mathematics
researchProduct