0000000000515194
AUTHOR
B. Oréfice-okamoto
The Bruce–Roberts Number of A Function on A Hypersurface with Isolated Singularity
AbstractLet $(X,0)$ be an isolated hypersurface singularity defined by $\phi \colon ({\mathbb{C}}^n,0)\to ({\mathbb{C}},0)$ and $f\colon ({\mathbb{C}}^n,0)\to{\mathbb{C}}$ such that the Bruce–Roberts number $\mu _{BR}(f,X)$ is finite. We first prove that $\mu _{BR}(f,X)=\mu (f)+\mu (\phi ,f)+\mu (X,0)-\tau (X,0)$, where $\mu $ and $\tau $ are the Milnor and Tjurina numbers respectively of a function or an isolated complete intersection singularity. Second, we show that the logarithmic characteristic variety $LC(X,0)$ is Cohen–Macaulay. Both theorems generalize the results of a previous paper by some of the authors, in which the hypersurface $(X,0)$ was assumed to be weighted homogeneous.
Families of ICIS with constant total Milnor number
We show that a family of isolated complete intersection singularities (ICIS) with constant total Milnor number has no coalescence of singularities. This extends a well-known result of Gabriélov, Lazzeri and Lê for hypersurfaces. We use A’Campo’s theorem to see that the Lefschetz number of the generic monodromy of the ICIS is zero when the ICIS is singular. We give a pair applications for families of functions on ICIS which extend also some known results for functions on a smooth variety.