0000000000515289

AUTHOR

Alexander Gerfer

Improving the Efficiency of NFC Systems Through Optimizing the Sintered Ferrite Sheet Thickness Selection

The reduction of embedded portable devices involves a magnetic field interference problem when it integrates near field communication (NFC) due to the presence of conductive surfaces, such as ground planes, batteries, or metallic enclosures. Flexible sintered ferrite sheets (FSFS) represent an interesting shielding solution to prevent electromagnetic interferences problems related to NFC, thanks to their ability to control the magnetic flux. The characterization of FSFS effectiveness is analyzed as a function of the sheet thickness in this contribution. This is performed with the aim of determining which is the optimum thickness value to retune an NFC antenna to its original operation frequ…

research product

Transmission Attenuation Power Ratio Analysis of Flexible Electromagnetic Absorber Sheets Combined with a Metal Layer.

Electromagnetic noise absorber sheets have become a solution for solving complex electromagnetic interference (EMI) problems due to their high magnetic losses. This contribution is focused on characterizing a novel structure that is based on an absorber film with a metal layer attached on its top side. Two different absorber compositions were combined with Al and Cu metal layers in order to study the improvement on the performance of these structures, depending on the complex permeability, absorber film thickness, and type of metal. The transmission attenuation power ratio of the absorber films is analyzed and compared to the performance of absorber and metal structures. The measurement pro…

research product

Performance Study of Split Ferrite Cores Designed for EMI Suppression on Cables

The ideal procedure to start designing an electronic device is to consider the electromagnetic compatibility (EMC) from the beginning. Even so, EMC problems can appear afterward, especially when the designed system is interconnected with external devices. Thereby, electromagnetic interferences (EMIs) could be transmitted to our device from power cables that interconnect it with an external power source or are connected to another system to establish wired communication. The application of an EMI suppressor such as a sleeve core that encircles the cables is a widely used technique to attenuate EM disturbances. This contribution is focused on the characterization of a variation of this cable …

research product