0000000000516045

AUTHOR

Vladimir Grigorev

showing 4 related works from this author

Optical read-out of the N\'eel vector in metallic antiferromagnet Mn$_{2}$Au

2021

Metallic antiferromagnets with broken inversion symmetry on the two sublattices, strong spin-orbit coupling and high N\'{e}el temperatures offer new opportunities for applications in spintronics. Especially Mn$_{2}$Au, with high N\'{e}el temperature and conductivity, is particularly interesting for real-world applications. Here, manipulation of the orientation of the staggered magnetization,\textit{\ i.e.} the N\'{e}el vector, by current pulses has been recently demonstrated, with the read-out limited to studies of anisotropic magnetoresistance or X-ray magnetic linear dichroism. Here, we report on the in-plane reflectivity anisotropy of Mn$_{2}$Au (001) films, which were N\'{e}el vector al…

Condensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsGeneral Physics and AstronomyLibrary science02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter::Materials ScienceBeamline0103 physical sciencesEuropean commission010306 general physics0210 nano-technologySwiss Light Source
researchProduct

Dynamics of Collective Modes in an unconventional Charge Density Wave system BaNi$_{2}$As$_{2}$

2021

AbstractBaNi2As2 is a non-magnetic analogue of BaFe2As2, the parent compound of a prototype pnictide high-temperature superconductor, displaying superconductivity already at ambient pressure. Recent diffraction studies demonstrated the existence of two types of periodic lattice distortions above and below the triclinic phase transition, suggesting the existence of an unconventional charge-density-wave (CDW) order. The suppression of CDW order upon doping results in a sixfold increase in the superconducting transition temperature and enhanced nematic fluctuations, suggesting CDW is competing with superconductivity. Here, we apply time-resolved optical spectroscopy to investigate collective d…

Superconductivity (cond-mat.supr-con)Condensed Matter - Strongly Correlated ElectronsStrongly Correlated Electrons (cond-mat.str-el)530 PhysicsCondensed Matter - SuperconductivityPhysicsCondensed Matter::SuperconductivityGeneral Physics and AstronomyFOS: Physical sciencesddc:530Condensed Matter::Strongly Correlated Electrons530 Physik
researchProduct

The Statistical Description of de Haas—van Alphen Oscillations in Silicon Nanosandwich

2020

Here, we present room temperature de Haas—van Alphen oscillations measured in silicon nanosandwich in a weak magnetic field. Our results demonstrate a decrease of the oscillation magnitude with increasing magnetic field strength. This behavior is drastically different from the results reported earlier and it is attributed to the low-dimensionality of the studied structure, which enables room temperature observation of the de Haas—van Alphen effect in moderate magnetic fields up to 1000 Oe. We employ the classic Lifshitz-Kosevich formalism based on the dependence of the carrier effective mass on the applied magnetic field, to statistically describe this effect. We note that the statistical a…

PhysicsMagnetizationEffective mass (solid-state physics)SiliconchemistryCondensed matter physicsOscillationchemistry.chemical_elementDe Haas–van Alphen effectMagnetic field
researchProduct

Single crystal-like thin films of blue bronze

2021

Abstract Pulsed laser deposition technique was employed to grow thin films of K 0.3 M o O 3 on A l 2 O 3 (1-102) and S r T i O 3 (510) substrates. Structural and imaging characterization revealed good quality films with well oriented grains of few microns in length. Both non-selective (transport) and order-selective (femtosecond pump-probe spectroscopy) probes revealed charge density wave properties that are very close to those of the single crystals. The films exhibit metal-semiconductor phase transition in resistivity, pump-probe data show phase transition at the same temperature as the single crystal and the threshold for the photo-induced phase transition is approximately the same as in…

010302 applied physicsPhase transitionMaterials scienceMetals and AlloysAnalytical chemistry02 engineering and technologySurfaces and Interfaces021001 nanoscience & nanotechnology01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsPulsed laser depositionBlue bronze (BB) ; Charge density waves (CDW) ; Thin films ; Single crystal-like ; Ultrafast pump-probe spectroscopyElectrical resistivity and conductivity0103 physical sciencesFemtosecondMaterials ChemistryThin film0210 nano-technologySpectroscopySingle crystalCharge density waveThin Solid Films
researchProduct