0000000000516136

AUTHOR

G. Von Hippel

Radiative Improvement of the Lattice Nonrelativistic QCD Action Using the Background Field Method and Application to the Hyperfine Splitting of Quarkonium States

We present the first application of the background field method to nonrelativistic QCD (NRQCD) on the lattice in order to determine the one-loop radiative corrections to the coefficients of the NRQCD action in a manifestly gauge-covariant manner. The coefficients of the $\mathbit{\ensuremath{\sigma}}\ifmmode\cdot\else\textperiodcentered\fi{}\mathbit{B}$ term in the NRQCD action and the four-fermion spin-spin interaction are computed at the one-loop level; the resulting shift of the hyperfine splitting of bottomonium is found to bring the lattice predictions in line with experiment.

research product

Nucleon axial charge in lattice QCD with controlled errors

We report on our calculation of the nucleon axial charge ${g}_{\mathrm{A}}$ in QCD with two flavors of dynamical quarks. A detailed investigation of systematic errors is performed, with a particular focus on contributions from excited states to three-point correlation functions. The use of summed operator insertions allows for a much better control over such contamination. After performing a chiral extrapolation to the physical pion mass, we find ${g}_{\mathrm{A}}=1.223\ifmmode\pm\else\textpm\fi{}0.063(\mathrm{stat}{)}_{\ensuremath{-}0.060}^{+0.035}(\mathrm{syst})$, in good agreement with the experimental value.

research product

Isovector electromagnetic form factors of the nucleon from lattice QCD and the proton radius puzzle

Physical review / D 103(9), 094522 (2021). doi:10.1103/PhysRevD.103.094522

research product

Nucleon electromagnetic form factors in two-flavor QCD

We present results for the nucleon electromagnetic form factors, including the momentum transfer dependence and derived quantities (charge radii and magnetic moment). The analysis is performed using O(a) improved Wilson fermions in Nf=2 QCD measured on the CLS ensembles. Particular focus is placed on a systematic evaluation of the influence of excited states in three-point correlation functions, which lead to a biased evaluation, if not accounted for correctly. We argue that the use of summed operator insertions and fit ans\"atze including excited states allow us to suppress and control this effect. We employ a novel method to perform joint chiral and continuum extrapolations, by fitting th…

research product

A lattice calculation of the hadronic vacuum polarization contribution to (g - 2)μ

We present results of calculations of the hadronic vacuum polarisation contribution to the muon anomalous magnetic moment. Specifically, we focus on controlling the infrared regime of the vacuum polarisation function. Our results are corrected for finite-size effects by combining the Gounaris-Sakurai parameterisation of the timelike pion form factor with the Lüscher formalism. The impact of quark-disconnected diagrams and the precision of the scale determination is discussed and included in our final result in two-flavour QCD, which carries an overall uncertainty of 6%. We present preliminary results computed on ensembles with Nf = 2 + 1 dynamical flavours and discuss how the long-distance …

research product

Hadronic Contributions to the Anomalous Magnetic Moment of the Muon from Lattice QCD

The Standard Model of Particle Physics describes three of the four known fundamental interactions: the strong interaction between quarks and gluons, the electromagnetic interaction, and the weak interaction. While the Standard Model is extremely successful, we know that it is not a complete description of nature. One way to search for physics beyond the Standard Model lies in the measurement of precision observables. The anomalous magnetic moment of the muon \(a_\mu \equiv \frac{1}{2}(g-2)_\mu \), quantifying the deviation of the gyromagnetic ratio from the exact value of 2 predicted by the Dirac equation, is one such precision observable. It exhibits a persistent discrepancy of 3.5 standar…

research product

The anomalous magnetic moment of the muon in the Standard Model

We are very grateful to the Fermilab Directorate and the Fermilab Theoretical Physics Department for their financial and logistical support of the first workshop of the Muon g -2 Theory Initiative (held near Fermilab in June 2017) [123], which was crucial for its success, and indeed for the successful start of the Initiative. Financial support for this workshop was also provided by the Fermilab Distinguished Scholars program, the Universities Research Association through a URA Visiting Scholar award, the Riken Brookhaven Research Center, and the Japan Society for the Promotion of Science under Grant No. KAKEHNHI-17H02906. We thank Shoji Hashimoto, Toru Iijima, Takashi Kaneko, and Shohei Nis…

research product

Nucleon axial form factors from two-flavour Lattice QCD

We present preliminary results on the axial form factor $G_A(Q^2)$ and the induced pseudoscalar form factor $G_P(Q^2)$ of the nucleon. A systematic analysis of the excited-state contributions to form factors is performed on the CLS ensemble `N6' with $m_\pi = 340 \ \text{MeV}$ and lattice spacing $a \sim 0.05 \ \text{fm}$. The relevant three-point functions were computed with source-sink separations ranging from $t_s \sim 0.6 \ \text{fm}$ to $t_s \sim \ 1.4 \ \text{fm}$. We observe that the form factors suffer from non-trivial excited-state contributions at the source-sink separations available to us. It is noted that naive plateau fits underestimate the excited-state contributions and that…

research product