0000000000516161

AUTHOR

Alex Lyakhovich

0000-0002-8279-4697

showing 6 related works from this author

Aging-Related Disorders and Mitochondrial Dysfunction: A Critical Review for Prospect Mitoprotective Strategies Based on Mitochondrial Nutrient Mixtu…

2020

A number of aging-related disorders (ARD) have been related to oxidative stress (OS) and mitochondrial dysfunction (MDF) in a well-established body of literature. Most studies focused on cardiovascular disorders (CVD), type 2 diabetes (T2D), and neurodegenerative disorders. Counteracting OS and MDF has been envisaged to improve the clinical management of ARD, and major roles have been assigned to three mitochondrial cofactors, also termed mitochondrial nutrients (MNs), i.e., alpha-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and carnitine (CARN). These cofactors exert essential-and distinct-roles in mitochondrial machineries, along with strong antioxidant properties. Clinical trials have mostly…

0301 basic medicineAgingAntioxidantUbiquinonemedicine.medical_treatmentmitochondrial nutrientsReviewoptic neuropathiesType 2 diabetesPharmacologyMitochondrionmedicine.disease_causeAntioxidantslcsh:Chemistrychemistry.chemical_compound0302 clinical medicineCardiovascular Diseaseoxidative stressaging-related disorderslcsh:QH301-705.5SpectroscopyThioctic AcidMitochondrial nutrientNeurodegenerative DiseasesGeneral MedicineComputer Science ApplicationsMitochondriaCardiovascular DiseasesAntioxidantmedicine.drugHumanCatalysisAging-related disorderCell LineInorganic Chemistry03 medical and health sciencesCarnitinemedicineAnimalsHumansMicrobiomeCarnitinePhysical and Theoretical ChemistryMolecular BiologyCoenzyme Q10business.industryAnimalOrganic ChemistryOxidative Stremedicine.diseaseClinical trial030104 developmental biologylcsh:Biology (General)lcsh:QD1-999chemistryDiabetes Mellitus Type 2MicrobiomeOptic neuropathiebusinessMitochondrial dysfunction030217 neurology & neurosurgeryOxidative stress
researchProduct

Re-definition and supporting evidence toward Fanconi Anemia as a mitochondrial disease: Prospects for new design in clinical management

2021

Fanconi anemia (FA) has been investigated since early studies based on two definitions, namely defective DNA repair and proinflammatory condition. The former definition has built up the grounds for FA diagnosis as excess sensitivity of patients' cells to xenobiotics as diepoxybutane and mitomycin C, resulting in typical chromosomal abnormalities. Another line of studies has related FA phenotype to a prooxidant state, as detected by both in vitro and ex vivo studies. The discovery that the FA group G (FANCG) protein is found in mitochondria (Mukhopadhyay et al., 2006) has been followed by an extensive line of studies providing evidence for multiple links between other FA gene products and mi…

0301 basic medicineMitochondrial DNAMitochondrial DiseasesMitomycinMitochondrial diseaseClinical BiochemistryDiepoxybutaneReview ArticleMitochondrionBiologyBiochemistry03 medical and health scienceschemistry.chemical_compound0302 clinical medicineFanconi anemiaFANCGmedicineHumansClastogenCarnitinelcsh:QH301-705.5Coenzyme Q10lcsh:R5-920ProteinOrganic ChemistryMitochondrial nutrientProteinsmedicine.diseaseMitochondrial diseaseFanconi AnemiaPhenotypeClastogens030104 developmental biologylcsh:Biology (General)chemistryProoxidant stateCancer researchMitochondrial nutrientsMitochondrial dysfunctionlcsh:Medicine (General)030217 neurology & neurosurgeryHumanmedicine.drugRedox Biology
researchProduct

Friedreich Ataxia: current state-of-the-art, and future prospects for mitochondrial-focused therapies

2021

Friedreichs Ataxia is an autosomal recessive genetic disease causing the defective gene product, frataxin. A body of literature has been focused on the attempts to counteract frataxin deficiency and the consequent iron imbalance, in order to mitigate the disease-associated prooxidant state and clinical course. The present mini review is aimed at evaluating the basic and clinical reports on the roles and the use of a set of iron chelators, antioxidants and some cofactors involved in the key mitochondrial functions. Extensive literature has focused on the protective roles of iron chelators, coenzyme Q10 and analogs, and vitamin E, altogether with varying outcomes in clinical studies. Other st…

0301 basic medicineAtaxiaUbiquinoneAlpha-Lipoic AcidDiseaseMitochondrionIron Chelating AgentsBioinformaticsAntioxidantsLinoleic Acid03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCarnitinePhysiology (medical)AnimalsHumansMedicineDeferiproneCarnitineInner mitochondrial membraneCoenzyme Q10biologyAnimalbusiness.industryBiochemistry (medical)Public Health Environmental and Occupational HealthGeneral MedicineMitochondriaIron Chelating Agent030104 developmental biologyLinoleic AcidschemistryFriedreich Ataxia030220 oncology & carcinogenesisFrataxinbiology.proteinAntioxidantmedicine.symptombusinessHumanmedicine.drugTranslational Research
researchProduct

Mitoprotective Clinical Strategies in Type 2 Diabetes and Fanconi Anemia Patients: Suggestions for Clinical Management of Mitochondrial Dysfunction

2020

Oxidative stress (OS) and mitochondrial dysfunction (MDF) occur in a number of disorders, and several clinical studies have attempted to counteract OS and MDF by providing adjuvant treatments against disease progression. The present review is aimed at focusing on two apparently distant diseases, namely type 2 diabetes (T2D) and a rare genetic disease, Fanconi anemia (FA). The pathogenetic links between T2D and FA include the high T2D prevalence among FA patients and the recognized evidence for OS and MDF in both disorders. This latter phenotypic/pathogenetic feature—namely MDF—may be regarded as a mechanistic ground both accounting for the clinical outcomes in both diseases, and…

0301 basic medicinePhysiologymedicine.medical_treatmentClinical Biochemistrymitochondrial nutrientsDiseaseType 2 diabetesReviewBioinformaticsmedicine.disease_causeBiochemistry03 medical and health scienceschemistry.chemical_compound0302 clinical medicineIn vivoFanconi anemiamitochondrial dysfunctionmedicineoxidative stressMolecular Biologyfanconi anemiaCoenzyme Q10business.industrylcsh:RM1-950Mitochondrial nutrientCell Biologymedicine.diseasePhenotype030104 developmental biologylcsh:Therapeutics. Pharmacologychemistry030220 oncology & carcinogenesisOxidative stretype 2 diabetesbusinessAdjuvantOxidative stressAntioxidants
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1

2021

Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…

0301 basic medicineProgrammed cell deathSettore BIO/06AutophagosomeAutolysosome[SDV]Life Sciences [q-bio]lnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Autophagy-Related ProteinsReviewComputational biology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologySettore MED/0403 medical and health sciencesstressChaperone-mediated autophagyddc:570AutophagyLC3AnimalsHumanscancerSettore BIO/10Autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSet (psychology)Molecular Biologyvacuole.phagophore030102 biochemistry & molecular biologyvacuolebusiness.industryInterpretation (philosophy)AutophagyAutophagosomesneurodegenerationCell BiologyfluxMulticellular organismmacroautophagy030104 developmental biologyKnowledge baselysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleBiological AssayLysosomesbusinessBiomarkers[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Autophagy

2021

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…

macroautophagy;autophagyAutophagosome[SDV]Life Sciences [q-bio]canceLC3 macroautophagyautophagosomeneurodegeneration;[SDV.BC]Life Sciences [q-bio]/Cellular BiologyAutophagy AutophagosomeNOstress vacuolestressautophagic processesstrerfluxLC3cancerguidelinesAutophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/06 - Anatomia Comparata E Citologia[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUSMedaka oryzias latipesphagophorevacuoleQHneurodegenerationAutophagosome cancer flux LC3 lysosome macroautophagy neurodegeneration phagophore stress vacuoleautophagy; autophagic processes; guidelines; autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuolefluxmacroautophagystress.lysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/17 - ISTOLOGIARC
researchProduct