0000000000516248
AUTHOR
Anna Strelnikova
Mutilation of RNA phage Qβ virus-like particles: from icosahedrons to rods
Icosahedral virus-like particles (VLPs) of RNA phage Qbeta are stabilized by four disulfide bonds of cysteine residues 74 and 80 within the loop between beta-strands F and G (FG loop) of the monomeric subunits, which determine the five-fold and quasi-six-fold symmetry contacts of the VLPs. In order to reduce the stability of Qbeta VLPs, we mutationally converted the amino acid stretch 76-ANGSCD-81 within the FG loop into the 76-VGGVEL-81 sequence. It led to production in Escherichia coli cells of aberrant rod-like Qbeta VLPs, along with normal icosahedral capsids. The length of the rod-like particles exceeded 4-30 times the diameter of icosahedral Qbeta VLPs.
Mosaic Qβ coats as a new presentation model
The new protein carrier was developed on the basis of recombinant RNA phage Qbeta capsid. C-terminal UGA extension of the short form of Qbeta coat, so-called A1 extension, served as a target for presentation of foreign peptides on the outer surface of mosaic Qbeta particles. In conditions of enhanced UGA suppression, the proportion of A1-extended to short coats in mosaic particles dropped from 48% to 14%, with an increase of the length of A1 extension. A model insertion, short preS1 epitope 31-DPAFR-35 of hepatitis B surface antigen, demonstrated superficial location on the mosaic Qbeta particles and ensured specific antigenicity and immunogenicity.