0000000000516284

AUTHOR

Alessandro Quattrone

showing 3 related works from this author

Ythdf is a N6‐methyladenosine reader that modulates Fmr1 target mRNA selection and restricts axonal growth in Drosophila

2021

Abstract N6‐methyladenosine (m6A) regulates a variety of physiological processes through modulation of RNA metabolism. This modification is particularly enriched in the nervous system of several species, and its dysregulation has been associated with neurodevelopmental defects and neural dysfunctions. In Drosophila, loss of m6A alters fly behavior, albeit the underlying molecular mechanism and the role of m6A during nervous system development have remained elusive. Here we find that impairment of the m6A pathway leads to axonal overgrowth and misguidance at larval neuromuscular junctions as well as in the adult mushroom bodies. We identify Ythdf as the main m6A reader in the nervous system,…

Nervous systemCancer ResearchAdenosineMessengerRNA-binding proteinBiologyArticleGeneral Biochemistry Genetics and Molecular BiologyFragile X Mental Retardation Protein03 medical and health scienceschemistry.chemical_compound0302 clinical medicinemedicineAnimalsDrosophila ProteinsFmr1; RNA modification; Ythdf; m6A; nervous systemRNA MessengerFmr1Molecular BiologyDrosophila030304 developmental biologyNeurons0303 health sciencesGeneral Immunology and MicrobiologyProteomics and Chromatin BiologyGeneral Neurosciencenervous systemRNA-Binding ProteinsTranslation (biology)Articlesm6AProtein Biosynthesis & Quality ControlRNA modificationYthdfbiology.organism_classificationRNA BiologyFMR1Fmr1; RNA modification; Ythdf; m6A; nervous system; Adenosine; Animals; Axons; Drosophila Proteins; Drosophila melanogaster; Fragile X Mental Retardation Protein; Neurons; RNA Messenger; RNA-Binding ProteinsAxonsCell biologyDrosophila melanogastermedicine.anatomical_structurechemistryMushroom bodiesRNATarget mrnaN6-Methyladenosine030217 neurology & neurosurgeryNeuroscienceThe EMBO Journal
researchProduct

Positioning Europe for the EPITRANSCRIPTOMICS challenge

2018

WOS: 000444092300018 PubMed ID: 29671387 The genetic alphabet consists of the four letters: C, A, G, and T in DNA and C,A,G, and U in RNA. Triplets of these four letters jointly encode 20 different amino acids out of which proteins of all organisms are built. This system is universal and is found in all kingdoms of life. However, bases in DNA and RNA can be chemically modified. In DNA, around 10 different modifications are known, and those have been studied intensively over the past 20years. Scientific studies on DNA modifications and proteins that recognize them gave rise to the large field of epigenetic and epigenomic research. The outcome of this intense research field is the discovery t…

Epigenomics0301 basic medicine[SDV]Life Sciences [q-bio]Gene ExpressionDetection of RNA ModificationEpigenesis GeneticTranscriptomechemistry.chemical_compoundEcologyEvolution & EthologyNeoplasmsRNA NeoplasmEuropean FundingComputingMilieux_MISCELLANEOUSRNA Neoplasm/geneticsEpitranscriptomicsEpigenomicsStem CellsDNA NeoplasmNeoplasms/genetics[SDV] Life Sciences [q-bio]EuropeGene Expression Regulation NeoplasticDetection of RNA modificationGenetics & GenomicsComputational biologyBiologyBiochemistry & ProteomicsENCODE03 medical and health sciencesEpigenomics/standardsEpitranscriptomicsModel systemsHumansEpigeneticsDatabase of ModificationDNA Neoplasm/geneticsMolecular BiologyComputational & Systems BiologyEuropean funding[SDV.GEN]Life Sciences [q-bio]/GeneticsGene Expression ProfilingFOS: Clinical medicineNeurosciencesModel SystemsRNACell Biology030104 developmental biologychemistryGene Expression Profiling/methodsAlphabetTranscriptomeDNARNA Biology
researchProduct

Influence of scaffold pore size on collagen I development: A new in vitro evaluation perspective

2013

Bone tissue engineering takes part in the complex process of bone healing by combining cells, chemical/physical signals, and scaffolds with the scaffolds providing an artificial extracellular matrix network. The role of the support template for cell activity is crucial to guide the healing process. This in vitro study compared three different poly(D,L-lactic acid) scaffolds obtained by varying the pore size generated by applying different salt leaching processes. The influence of pore dimensions on the extracellular matrix produced by human osteosarcoma-derived osteoblasts (MG63 cell line) seeded on these different materials was analyzed. This study is targeted on the intermediate stage of…

Pore sizeScaffoldPolymers and PlasticsChemistryConfocalBioengineeringBone healingIn vitroBiomaterialsExtracellular matrixGene expressionCollagen networkMaterials ChemistryBiomedical engineeringJournal of Bioactive and Compatible Polymers
researchProduct