0000000000517202

AUTHOR

Maria T. Biondi

showing 4 related works from this author

Some spectral mapping theorems through local spectral theory

2004

The spectral mapping theorems for Browder spectrum and for semi-Browder spectra have been proved by several authors [14], [29] and [33], by using different methods. We shall employ a local spectral argument to establish these spectral mapping theorems, as well as, the spectral mapping theorem relative to some other classical spectra. We also prove that ifT orT* has the single-valued extension property some of the more important spectra originating from Fredholm theory coincide. This result is extended, always in the caseT orT* has the single valued extension property, tof(T), wheref is an analytic function defined on an open disc containing the spectrum ofT. In the last part we improve a re…

Pure mathematicsSpectral theoryTransform theoryGeneral MathematicsSpectrum (functional analysis)Mathematical analysisExtension (predicate logic)Single valued extension property Weyl and semi-Browder operators spectral mapping theorems Weyl’s theoremFredholm theorySpectral linesymbols.namesakesymbolsSpectral theory of ordinary differential equationsAnalytic functionMathematicsRendiconti del Circolo Matematico di Palermo
researchProduct

On Drazin invertibility

2008

The left Drazin spectrum and the Drazin spectrum coincide with the upper semi-B-Browder spectrum and the B-Browder spectrum, respectively. We also prove that some spectra coincide whenever T or T* satisfies the single-valued extension property.

Mathematics::Functional AnalysisPure mathematicsProperty (philosophy)Applied MathematicsGeneral MathematicsMathematics::Rings and AlgebrasSpectrum (functional analysis)Extension (predicate logic)Mathematics::Geometric TopologyMathematics::Algebraic TopologySpectral lineAlgebraDrazin invertible operatorsMathematicsProceedings of the American Mathematical Society
researchProduct

Browder's theorems through localized SVEP

2005

A bounded linear operator T ∈ L(X) on aBanach space X is said to satisfy “Browder’s theorem” if the Browder spectrum coincides with the Weyl spectrum. T ∈ L(X) is said to satisfy “a-Browder’s theorem” if the upper semi-Browder spectrum coincides with the approximate point Weyl spectrum. In this note we give several characterizations of operators satisfying these theorems. Most of these characterizations are obtained by using a localized version of the single-valued extension property of T. In the last part we shall give some characterizations of operators for which “Weyl’s theorem” holds.

CombinatoricsMathematics::Functional AnalysisOperator (computer programming)General MathematicsSpectrum (functional analysis)PropertyOperatorExtension (predicate logic)Space (mathematics)theorem holdsMathematics::Algebraic TopologyBounded operatorMathematics
researchProduct

Property (w) and perturbations III

2009

AbstractThe property (w) is a variant of Weyl's theorem, for a bounded operator T acting on a Banach space. In this note we consider the preservation of property (w) under a finite rank perturbation commuting with T, whenever T is polaroid, or T has analytical core K(λ0I−T)={0} for some λ0∈C. The preservation of property (w) is also studied under commuting nilpotent or under injective quasi-nilpotent perturbations. The theory is exemplified in the case of some special classes of operators.

Weyl's theoremsSettore MAT/05 - Analisi MatematicaProperty (w)Applied MathematicsPolaroid operatorOperatori polaroidi teoremi di WeylSVEPAnalysisJournal of Mathematical Analysis and Applications
researchProduct