6533b86efe1ef96bd12cb636

RESEARCH PRODUCT

Browder's theorems through localized SVEP

Maria T. BiondiPietro Aiena

subject

CombinatoricsMathematics::Functional AnalysisOperator (computer programming)General MathematicsSpectrum (functional analysis)PropertyOperatorExtension (predicate logic)Space (mathematics)theorem holdsMathematics::Algebraic TopologyBounded operatorMathematics

description

A bounded linear operator T ∈ L(X) on aBanach space X is said to satisfy “Browder’s theorem” if the Browder spectrum coincides with the Weyl spectrum. T ∈ L(X) is said to satisfy “a-Browder’s theorem” if the upper semi-Browder spectrum coincides with the approximate point Weyl spectrum. In this note we give several characterizations of operators satisfying these theorems. Most of these characterizations are obtained by using a localized version of the single-valued extension property of T. In the last part we shall give some characterizations of operators for which “Weyl’s theorem” holds.

10.1007/s00009-005-0035-9http://hdl.handle.net/10447/7422