0000000000057989

AUTHOR

Pietro Aiena

showing 84 related works from this author

Weyl's theorem for some classes of operators

2005

researchProduct

Weyl's Theorems and Extensions of Bounded Linear Operators

2012

A bounded operator $T\in L(X)$, $X$ a Banach space, is said to satisfy Weyl's theorem if the set of all spectral points that do not belong to the Weyl spectrum coincides with the set of all isolated points of the spectrum which are eigenvalues and having finite multiplicity. In this article we give sufficient conditions for which Weyl's theorem for an extension $\overline T$ of $T$ (respectively, for $T$) entails that Weyl's theorem holds for $T$ (respectively, for $\overline T$).

Pure mathematicsGeneral MathematicsSpectrum (functional analysis)Extension of bounded operators Weyl type theoremsBanach spaceMultiplicity (mathematics)Extension (predicate logic)Mathematics::Spectral TheoryBounded operatorSet (abstract data type)47A1047A1147A55Settore MAT/05 - Analisi MatematicaBounded function47A53Mathematics::Representation TheoryEigenvalues and eigenvectorsMathematics
researchProduct

Weyl's theorems and Kato spectrum

2007

researchProduct

Generalized Weyl's theorem and quasi-affinity

2010

AlgebraPicard–Lindelöf theoremGeneral MathematicsMathematicsStudia Mathematica
researchProduct

Local Spectral Theory

2018

In this chapter we shall introduce an important property, defined for bounded linear operators on complex Banach spaces, the so-called single-valued extension property (SVEP).

Pure mathematicsSpectral theoryProperty (philosophy)Bounded functionLinear operatorsBanach spaceExtension (predicate logic)Mathematics
researchProduct

Fredholm Spectra and Weyl Type Theorems for Drazin Invertible Operators

2016

In this paper we investigate the relationship between some spectra originating from Fredholm theory of a Drazin invertible operator and its Drazin inverse, if this does exist. Moreover, we study the transmission of Weyl type theorems from a Drazin invertible operator R, to its Drazin inverse S.

Pure mathematicsFredholm theoryDrazin invertible operatorGeneral MathematicsMathematics::Rings and Algebras010102 general mathematicsDrazin inverse010103 numerical & computational mathematicsType (model theory)01 natural sciencesFredholm theorylaw.inventionAlgebrasymbols.namesakeOperator (computer programming)Invertible matrixlawSettore MAT/05 - Analisi MatematicasymbolsBrowder and Weyl type theoremMathematics (all)0101 mathematicsMathematics
researchProduct

Property (gab) through localized SVEP

2015

In this article we study the property (gab) for a bounded linear operator T 2 L(X) on a Banach space X which is a stronger variant of Browder's theorem. We shall give several characterizations of property (gab). These characterizations are obtained by using typical tools from local spectral theory. We also show that property (gab) holds for large classes of operators and prove the stability of property (gab) under some commuting perturbations. 2010 Mathematics Subject Classication. Primary 47A10, 47A11; Secondary 47A53, 47A55.

Discrete mathematicsNumerical AnalysisPure mathematicsControl and OptimizationSpectral theoryProperty (philosophy)Property (gab) local spectral subspaces Browder type theorems.Applied Mathematics010102 general mathematicsBanach space010103 numerical & computational mathematics01 natural sciencesStability (probability)Bounded operatorSettore MAT/05 - Analisi Matematica0101 mathematicsAnalysisMathematics
researchProduct

Some perturbation results through localized SVEP

2016

Some classical perturbation results on Fredholm theory are proved and extended by using the stability of the localized single-valued extension property under Riesz commuting perturbations. In the last part, we give some results concerning the stability of property (gR) and property (gb.

Applied Mathematics010102 general mathematicsAnalysiPerturbation (astronomy)Property (gR) and property (Gb)Operators with topological uniform descent01 natural sciences010101 applied mathematicsSettore MAT/05 - Analisi MatematicaLocalized svep0101 mathematicsRiesz operatorAnalysisMathematicsMathematical physicsActa Scientiarum Mathematicarum
researchProduct

Fredholm and local spectral theory, with applications to multipliers

2004

This book shows the deep interaction between two important theories: Fredholm and local spectral theory. A particular emphasis is placed on the applications to multipliers and in particular to convolution operators. The book also presents some important progress, made in recent years, in the study of perturbation theory for classes of operators which occur in Fredholm theory

researchProduct

On the stability of the localized single-valued extension property under commuting perturbations

2013

This article concerns the permanence of the single-valued extension property at a point under suitable perturbations. While this property is, in general, not preserved under sums and products of commuting operators, we obtain positive results in the case of commuting perturbations that are quasi-nilpotent, algebraic, or Riesz operators.

SVEP quesi-nilpotent operatorsProperty (philosophy)Settore MAT/05 - Analisi MatematicaApplied MathematicsGeneral MathematicsMathematical analysisExtension (predicate logic)Operator theoryStability (probability)MathematicsProceedings of the American Mathematical Society
researchProduct

On the Dunford property (C) for bounded linear operators SR and RS

2011

In this paper we show that if S in L(X; Y ) and R in L(Y;X), X and Y complex Banach spaces, then the products RS and SR share the Dunford property (C)

Settore MAT/05 - Analisi MatematicaDunford property (C)
researchProduct

Weyl's and Browder's theorems through the quasi-nilpotent part of an operator

2006

researchProduct

Polaroid type operators under quasi-affinies

2010

We study the permanence of polaroid type conditions under quasi-affinities

Polaroid operators quasi-affinitiesSettore MAT/05 - Analisi Matematica
researchProduct

Semi-Fredholm operators, perturbation theory and localized SVEP

2007

researchProduct

Tensor products, multiplications and Weyl's theorem

2005

researchProduct

Tensor products, multiplications and Weyl’s theorem

2005

Tensor productsZ=T 1⊗T 2 and multiplicationsZ=L T 1 R T 2 do not inherit Weyl’s theorem from Weyl’s theorem forT 1 andT 2. Also, Weyl’s theorem does not transfer fromZ toZ*. We prove that ifT i,i=1, 2, has SVEP (=the single-valued extension property) at points in the complement of the Weyl spectrumσ w(Ti) ofT i, and if the operatorsT i are Kato type at the isolated points ofσ(Ti), thenZ andZ* satisfy Weyl’s theorem.

Weyl tensorPure mathematicsComplement (group theory)General MathematicsExtension (predicate logic)Mathematics::Spectral TheoryType (model theory)symbols.namesakeTransfer (group theory)Tensor productTensor (intrinsic definition)symbolsWeyl transformationMathematics::Representation TheoryMathematicsRendiconti del Circolo Matematico di Palermo
researchProduct

On left and right poles of the resolvent

2008

researchProduct

Some characterizations of operators satisfying a-Browder's theorem

2005

Abstract We characterize the bounded linear operators T defined on Banach spaces satisfying a-Browder's theorem, or a-Weyl's theorem, by means of the discontinuity of some maps defined on certain subsets of C . Several other characterizations are given in terms of localized SVEP, as well as by means of the quasi-nilpotent part, the hyper-kernel or the analytic core of λ I − T .

Discrete mathematicsUnbounded operatora-Browder's theoremFredholm theoryPicard–Lindelöf theoremApplied MathematicsEberlein–Šmulian theoremBanach spaceSpectral theoremOperator theorya-Weyl's theoremShift theoremLocal spectral theoryBounded inverse theoremAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Polaroid type operators under perturbations

2013

General MathematicsMathematical analysisType (model theory)MathematicsStudia Mathematica
researchProduct

On Commuting Quasi-Nilpotent Operators that are Injective

2022

Banach space operators that commute with an injective quasi-nilpotent operator, 11 such as the Volterra operator, inherit spectral and Fredholm properties, relating in 12 particular to the Weyl spectra.

Quasi-nilpotent injective perturbations Weyl spectra Weyl type theoremsSettore MAT/05 - Analisi MatematicaMathematical Proceedings of the Royal Irish Academy
researchProduct

Classes of operators satisfying a-Weyl's theorem

2005

In this article Weyl's theorem and a-Weyl's theorem on Banach spaces are related to an important property which has a leading role in local spectral theory: the single-valued extension theory. We show that if T has SVEP then Weyl's theorem and a-Weyl's theorem for T are equivalent, and analogously, if T has SVEP then Weyl's theorem and a-Weyl's theorem for T are equivalent. From this result we deduce that a-Weyl's theorem holds for classes of operators for which the quasi-nilpotent part H0(I T ) is equal to ker (I T ) p for some p2N and every 2C, and for algebraically paranormal operators on Hilbert spaces. We also improve recent results established by Curto and Han, Han and Lee, and Oudghi…

Discrete mathematicsSpectral theoryGeneral MathematicsHilbert spaceBanach spacePropertySpectral theoremFredholm theorysymbols.namesakeKernel (algebra)Bounded functionsymbolsOperatorBounded inverse theoremtheorem holdsMathematics
researchProduct

Single-valued extension property at the points of the approximate point spectrum

2003

Abstract A localized version of the single-valued extension property is studied at the points which are not limit points of the approximate point spectrum, as well as of the surjectivity spectrum. In particular, we shall characterize the single-valued extension property at a point λ o ∈ C in the case that λoI−T is of Kato type. From this characterizations we shall deduce several results on cluster points of some distinguished parts of the spectrum.

Discrete mathematicsFredholm theoryFredholm operatorApplied MathematicsSpectrum (functional analysis)Banach spaceExtension (predicate logic)Type (model theory)Fredholm theorySingle valued extension propertysymbols.namesakeLimit pointsymbolsPoint (geometry)AnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Some spectral mapping theorems through local spectral theory

2004

The spectral mapping theorems for Browder spectrum and for semi-Browder spectra have been proved by several authors [14], [29] and [33], by using different methods. We shall employ a local spectral argument to establish these spectral mapping theorems, as well as, the spectral mapping theorem relative to some other classical spectra. We also prove that ifT orT* has the single-valued extension property some of the more important spectra originating from Fredholm theory coincide. This result is extended, always in the caseT orT* has the single valued extension property, tof(T), wheref is an analytic function defined on an open disc containing the spectrum ofT. In the last part we improve a re…

Pure mathematicsSpectral theoryTransform theoryGeneral MathematicsSpectrum (functional analysis)Mathematical analysisExtension (predicate logic)Single valued extension property Weyl and semi-Browder operators spectral mapping theorems Weyl’s theoremFredholm theorySpectral linesymbols.namesakesymbolsSpectral theory of ordinary differential equationsAnalytic functionMathematicsRendiconti del Circolo Matematico di Palermo
researchProduct

Property (R) for Bounded Linear Operators

2011

We introduce the spectral property (R), for bounded linear operators defined on a Banach space, which is related to Weyl type theorems. This property is also studied in the framework of polaroid, or left polaroid, operators.

Discrete mathematicsProperty (philosophy)Settore MAT/05 - Analisi MatematicaApproximation propertyGeneral MathematicsBounded functionLinear operatorsBanach spaceProperty (R) polaroid operatorsOperator theoryType (model theory)Operator normMathematicsMediterranean Journal of Mathematics
researchProduct

Essential Spectra Under Perturbations

2018

The spectrum of a bounded linear operator on a Banach space X can be sectioned into subsets in many different ways, depending on the purpose of the inquiry.

PhysicsMathematical analysisSpectrum (functional analysis)Banach spaceMathematics::Metric GeometryComputer Science::DatabasesSpectral lineBounded operator
researchProduct

Browder-Type Theorems

2018

This chapter may be viewed as the part of the book in which the interaction between local spectral theory and Fredholm theory comes into focus. The greater part of the chapter addresses some classes of operators on Banach spaces that have a very special spectral structure. We have seen that the Weyl spectrum σw(T) is a subset of the Browder spectrum σb(T) and this inclusion may be proper. In this chapter we investigate the class of operators on complex infinite-dimensional Banach spaces for which the Weyl spectrum and the Browder spectrum coincide. These operators are said to satisfy Browder’s theorem. The operators which satisfy Browder’s theorem have a very special spectral structure, ind…

Mathematics::Functional AnalysisPure mathematicssymbols.namesakeClass (set theory)Spectral theorySpectrum (functional analysis)Spectral structuresymbolsBanach spaceType (model theory)Fredholm theoryMathematics
researchProduct

Weyl's type theorems for polaroid operators

2008

Teoremi di Weyl per operatori polaroidi

Settore MAT/05 - Analisi Matematicateorema di Weyl propietà (w)
researchProduct

Local Spectral Properties Under Conjugations

2021

AbstractIn this paper, we study some local spectral properties of operators having form JTJ, where J is a conjugation on a Hilbert space H and $$T\in L(H)$$ T ∈ L ( H ) . We also study the relationship between the quasi-nilpotent part of the adjoint $$T^*$$ T ∗ and the analytic core K(T) in the case of decomposable complex symmetric operators. In the last part we consider Weyl type theorems for triangular operator matrices for which one of the entries has form JTJ, or has form $$JT^*J$$ J T ∗ J . The theory is exemplified in some concrete cases.

Pure mathematicsGeneral MathematicsConjugations010102 general mathematicsSpectral propertiesLocal spectral propertiesHilbert space010103 numerical & computational mathematicsType (model theory)01 natural sciencesWeyl-type theorems for upper triangular operator matricessymbols.namesakeOperator matrixSettore MAT/05 - Analisi MatematicaCore (graph theory)symbols0101 mathematicsMathematics
researchProduct

Operators Which Do Not Have the Single Valued Extension Property

2000

Abstract In this paper we shall consider the relationships between a local version of the single valued extension property of a bounded operator T  ∈  L ( X ) on a Banach space X and some quantities associated with T which play an important role in Fredholm theory. In particular, we shall consider some conditions for which T does not have the single valued extension property at a point λ o  ∈  C .

Discrete mathematicsFredholm theoryProperty (philosophy)Applied MathematicsFredholm operatorBanach spaceExtension (predicate logic)Fredholm theoryBounded operatorLinear mapsymbols.namesakesingle valued extension propertysymbolsAnalysisMathematicsResolventJournal of Mathematical Analysis and Applications
researchProduct

Property (R) under perturbations

2012

Property (R) holds for a bounded linear operator $${T \in L(X)}$$ , defined on a complex infinite dimensional Banach space X, if the isolated points of the spectrum of T which are eigenvalues of finite multiplicity are exactly those points λ of the approximate point spectrum for which λI − T is upper semi-Browder. In this paper we consider the permanence of this property under quasi nilpotent, Riesz, or algebraic perturbations commuting with T.

Discrete mathematicsProperty (R)Mathematics::Functional AnalysisPure mathematicsGeneral MathematicsWeyl's theoremSpectrum (functional analysis)Banach spaceMultiplicity (mathematics)Bounded operatorNilpotentSettore MAT/05 - Analisi MatematicaPoint (geometry)Algebraic numberEigenvalues and eigenvectorsMathematics
researchProduct

CHARACTERIZATIONS OF STRICTLY SINGULAR AND STRICTLY COSINGULAR OPERATORS BY PERTURBATION CLASSES

2011

AbstractWe consider a class of operators that contains the strictly singular operators and it is contained in the perturbation class of the upper semi-Fredholm operators PΦ+. We show that this class is strictly contained in PΦ+, solving a question of Friedman. We obtain similar results for the strictly cosingular operators and the perturbation class of the lower semi-Fredholm operators PΦ−. We also characterize in terms of PΦ+ and in terms of PΦ−. As a consequence, we show that and are the biggest operator ideals contained in PΦ+ and PΦ−, respectively.

Pure mathematicsperturbation classes strictly singular and strictly cosingular operators on Banach spacesSettore MAT/05 - Analisi MatematicaGeneral MathematicsPerturbation (astronomy)Strictly singular operatorMathematicsGlasgow Mathematical Journal
researchProduct

Weyl type theorems for bounded linear operators on Banach spaces

2011

In 1909 H. Weyl [59] studied the spectra of all compact linear perturbations of a self-adjoint operator defined on a Hilbert space and found that their intersection consisted precisely of those points of the spectrum where are not isolated eigenvalues of nite multiplicity. Later, the property established by Weyl for self-adjoint operators has been observed for several other classes of operators, for instance hyponormal operators on Hilbert spaces, Toeplitz operators,convolution operators on group algebras, and many other classes of operators ned on Banach spaces . In the literature, a bounded linear operator defined on a Banach space which satisfies this property is said to satisfy Weyl's t…

Discrete mathematicsUnbounded operatorWeyl type theoremsSettore MAT/05 - Analisi MatematicaApproximation propertyFinite-rank operatorBanach manifoldOperator theoryInfinite-dimensional holomorphyBounded inverse theoremMathematicsBounded operatorAdvanced Courses of Mathematical Analysis IV
researchProduct

Property (w) and perturbations III

2009

AbstractThe property (w) is a variant of Weyl's theorem, for a bounded operator T acting on a Banach space. In this note we consider the preservation of property (w) under a finite rank perturbation commuting with T, whenever T is polaroid, or T has analytical core K(λ0I−T)={0} for some λ0∈C. The preservation of property (w) is also studied under commuting nilpotent or under injective quasi-nilpotent perturbations. The theory is exemplified in the case of some special classes of operators.

Weyl's theoremsSettore MAT/05 - Analisi MatematicaProperty (w)Applied MathematicsPolaroid operatorOperatori polaroidi teoremi di WeylSVEPAnalysisJournal of Mathematical Analysis and Applications
researchProduct

Weyl-Type Theorems

2018

In the previous chapters we introduced several classes of operators which have their origin in Fredholm theory. We also know that the spectrum of a bounded linear operator T on a Banach space X can be split into subsets in many different ways.

Mathematics::Functional AnalysisPure mathematicssymbols.namesakeSpectrum (functional analysis)Banach spacesymbolsType (model theory)Fredholm theoryMathematicsBounded operator
researchProduct

Some Remarks on the Spectral Properties of Toeplitz Operators

2019

In this paper, we study some local spectral properties of Toeplitz operators $$T_\phi $$ defined on Hardy spaces, as the localized single-valued extension property and the property of being hereditarily polaroid.

Mathematics::Functional AnalysisPure mathematicsProperty (philosophy)Weyl-type theoremslocalized single-valued extension propertyGeneral MathematicsSpectral propertiesExtension (predicate logic)Hardy spaceToeplitz matrixsymbols.namesakeToeplitz operatorSettore MAT/05 - Analisi MatematicasymbolsMathematicsMediterranean Journal of Mathematics
researchProduct

On the spectral properties of some classes of operators

2010

This article concerns the spectral properties of some classes of operators defined by means some inequelities

Settore MAT/05 - Analisi MatematicaLocal spectral theory and Fredholm theory
researchProduct

Polaroid operators and Weyl type theorems

2015

Weyl type theorems have been proved for a considerably large number of classes of operators. In this work, after introducing the class of polaroid operators and some notions from local spectral theory, we determine a theoretical and general framework from which Weyl type theorems may be promptly established for many of these classes of operators. The theory is exemplified by given several examples of hereditarily polaroid operators.

AlgebraClass (set theory)Spectral theoryMathematical analysisType (model theory)Mathematics
researchProduct

Property (gR) and perturbations

2012

Property (gR) holds for a bounded linear operator T defined on a complex Banach space X, the isolated points of the spectrum of T which are eigenvalues of finite multiplicity are exactly those points c of the approximate point spectrum such cI -T is upper semi B-Browder. In this paper we consider the permanence of this property under nilpotent, perturbations commuting with T.

Settore MAT/05 - Analisi MatematicaProperty (gR) SVEPApplied MathematicsAnalysisActa Scientiarum Mathematicarum
researchProduct

Single valued extension Property and Fredholm theory

2006

researchProduct

Examples of improjective operators

2000

It has been an open question for some time whether improjective operators are always inessential. Here we give some examples that answer in the negative this question as well as some other related ones, posed in [2, 3, 11, 12]. The description of the examples uses a indecomposable space, constructed by Gowers and Maurey [5], and a characterization of the indecomposable Banach spaces in terms of improjective operators.

AlgebraPure mathematicsApproximation propertyGeneral MathematicsBanach spaceCharacterization (mathematics)Space (mathematics)Indecomposable moduleMathematicsMathematische Zeitschrift
researchProduct

Weyl-Type Theorems on Banach Spaces Under Compact Perturbations

2018

In this paper, we study Browder-type and Weyl-type theorems for operators $$T+K$$ defined on a Banach space X, where K is (a non necessarily commuting) compact operator on X. In the last part, the theory is exemplified in the case of isometries, analytic Toeplitz operators, semi-shift operators, and weighted right shifts.

Mathematics::Functional AnalysisPure mathematicsGeneral Mathematics010102 general mathematicsBrowder-type theorems and Weyl-type theoremBanach spaceType (model theory)Compact operator01 natural sciencesToeplitz matrix010101 applied mathematicslocalized SVEPSettore MAT/05 - Analisi MatematicaMathematics (all)0101 mathematicsMathematics
researchProduct

Polaroid-Type Operators

2018

In this chapter we introduce the classes of polaroid-type operators, i.e., those operators T ∈ L(X) for which the isolated points of the spectrum σ(T) are poles of the resolvent, or the isolated points of the approximate point spectrum σap(T) are left poles of the resolvent. We also consider the class of all hereditarily polaroid operators, i.e., those operators T ∈ L(X) for which all the restrictions to closed invariant subspaces are polaroid. The class of polaroid operators, as well as the class of hereditarily polaroid operators, is very large. We shall see that every generalized scalar operator is hereditarily polaroid, and this implies that many classes of operators acting on Hilbert s…

symbols.namesakePure mathematicsOperator (computer programming)Scalar (mathematics)Hilbert spacesymbolsLocally compact spaceAbelian groupLinear subspaceCommutative propertyMathematicsResolvent
researchProduct

SOME SPECTRAL PROPERTIES OF MULTIPLIERS ON SEMI-PRIME BANACH ALGEBRAS

1995

Abstract We extend to arbitrary semi-prime Banach algebras some results of spectral theory and Fredholm theory obtained in [1] and [2] for multipliers defined in commutative semi-simple Banach algebras.

AlgebraMathematics::Functional Analysissymbols.namesakeMathematics (miscellaneous)Spectral theorySpectrum (functional analysis)Spectral propertiessymbolsBanach manifoldCommutative propertyFredholm theoryPrime (order theory)MathematicsQuaestiones Mathematicae
researchProduct

Weyl Type Theorems for Left and Right Polaroid Operators

2010

A bounded operator defined on a Banach space is said to be polaroid if every isolated point of the spectrum is a pole of the resolvent. In this paper we consider the two related notions of left and right polaroid, and explore them together with the condition of being a-polaroid. Moreover, the equivalences of Weyl type theorems and generalized Weyl type theorems are investigated for left and a-polaroid operators. As a consequence, we obtain a general framework which allows us to derive in a unified way many recent results, concerning Weyl type theorems (generalized or not) for important classes of operators.

Teoremi di Weyl operatori polaroidi SVEPLeft and rightPure mathematicsAlgebra and Number TheorySpectrum (functional analysis)Banach spaceType (model theory)Bounded operatorAlgebraIsolated pointSettore MAT/05 - Analisi MatematicaAnalysisResolventMathematicsIntegral Equations and Operator Theory
researchProduct

Local spectral theory for Drazin invertible operators

2016

Abstract In this paper we investigate the transmission of some local spectral properties from a bounded linear operator R, as SVEP, Dunford property (C), and property (β), to its Drazin inverse S, when this does exist.

Property (philosophy)Spectral theoryApplied MathematicsMathematics::Rings and Algebras010102 general mathematicsSpectral propertiesDrazin inverse01 natural sciencesBounded operatorlaw.invention010101 applied mathematicsAlgebraInvertible matrixTransmission (telecommunications)lawSettore MAT/05 - Analisi MatematicaDrazin invertible operators local spectral subspaces SVEP Dunford’s property (C) and Bishop’s property (β).0101 mathematicsAnalysisMathematics
researchProduct

Weil's theorem for perturbations of paranormal operators

2007

A bounded linear operator T ∈ L(X) on a Banach space X is said to satisfy "Weyl''s theorem" if the complement in the spectrum of the Weyl spectrum is the set of all isolated points of the spectrum which are eigenvalues of finite multiplicity. In this paper we show that if T is a paranormal operator on a Hilbert space, then T + K satisfies Weyl''s theorem for every algebraic operator K which commutes with T.

researchProduct

Operators which have a closed quasi-nilpotent part

2002

We find several conditions for the quasi-nilpotent part of a bounded operator acting on a Banach space to be closed. Most of these conditions are established for semi-Fredholm operators or, more generally, for operators which admit a generalized Kato decomposition. For these operators the property of having a closed quasi-nilpotent part is related to the so-called single valued extension property.

Unbounded operatorDiscrete mathematicsPure mathematicsApproximation propertyApplied MathematicsGeneral MathematicsSpectrum (functional analysis)Finite-rank operatorSpectral theoremOperator theoryOperator normFourier integral operatorMathematicsProceedings of the American Mathematical Society
researchProduct

On generalized a-Browder's theorem

2007

We characterize the bounded linear operators T satisfying generalized a-Browder's theorem, or generalized a-Weyl's theorem, by means of localized SVEP, as well as by means of the quasi-nilpotent part H0(�I T) asbelongs to certain sets of C. In the last part we give a general framework in which generalized a-Weyl's theorem follows for several classes of operators. 1. Preliminaries. Let L(X) denote the space of bounded linear oper- ators on an infinite-dimensional complex Banach space X. For T ∈ L(X), denote by α(T) the dimension of the kernel ker T, and by β(T) the codi- mension of the range T(X). The operator T ∈ L(X) is called upper semi- Fredholm if α(T) < ∞ and T(X) is closed, and lower …

Discrete mathematicsMathematics::Functional AnalysisFredholm theoryMathematics::Operator AlgebrasGeneral MathematicsFredholm operatorgeneralized Browder's theoremBanach spaceMathematics::Spectral TheoryFredholm theorySVEPCombinatoricssymbols.namesakeKernel (algebra)Operator (computer programming)Mathematics Subject ClassificationIntegerSettore MAT/05 - Analisi MatematicaMathematics::K-Theory and HomologyBounded functionsymbolsgeneralized Weyl's theoremMathematicsStudia Mathematica
researchProduct

Projections and isolated points of parts of the spectrum

2018

‎‎In this paper‎, ‎we relate the existence of certain projections‎, ‎commuting with a bounded linear operator $T\in L(X)$ acting on Banach space $X$‎, ‎with the generalized Kato decomposition of $T$‎. ‎We also relate the existence of these projections with some properties of the quasi-nilpotent part $H_0(T)$ and the analytic core $K(T)$‎. ‎Further results are given for the isolated points of some parts of the spectrum‎.

PhysicsPure mathematics47A11‎Algebra and Number Theory‎localized SVEP‎‎spectrum‎47A53‎Spectrum (functional analysis)Banach spaceLocalized SVEPKato decompositionBounded operator47A10SpectrumCore (graph theory)Decomposition (computer science)‎47A55Analysis
researchProduct

Weyl's type theorems and perturbations

2007

researchProduct

SVEP and local spectral radius formula for unbounded operators

2014

In this paper we study the localized single valued extension property for an unbounded operator T. Moreover, we provide sufficient conditions for which the formula of the local spectral radius holds for these operators.

Spectral radiusSettore MAT/05 - Analisi MatematicaGeneral MathematicsMathematical analysisLocalized SVEP local spectral radius formulaMathematics
researchProduct

Weyl's theorems through local spectral theory

2004

researchProduct

Intrinsic characterizations of perturbation classes on some Banach spaces

2010

We investigate relationships between inessential operators and improjective operators acting between Banach spaces X and Y, emphasizing the case in which one of the spaces is a C(K) space. We show that they coincide in many cases, but they are different in the case X=Y =C(K 0), where K 0 is a compact space constructed by Koszmider. Mathematics Subject Classification (2000)47A53 KeywordsInessential operators-Improjective operators-Fredholm theory

Pure mathematicsApproximation propertyNuclear operatorGeneral MathematicsMathematical analysisInterpolation spaceBirnbaum–Orlicz spaceFinite-rank operatorBanach manifoldLp spaceInessential operators improjective operatorsCompact operator on Hilbert spaceMathematics
researchProduct

Perturbations of polaroid type operators on Banach spaces and Applications

2011

We study the permanence of polaroid type conditions under perturbations

Settore MAT/05 - Analisi MatematicaPolaroid operators algebraic operators
researchProduct

Property (w) for perturbations of polaroid operators

2008

Abstract A bounded linear operator T ∈ L ( X ) acting on a Banach space satisfies property ( w ) , a variant of Weyl’s theorem, if the complement in the approximate point spectrum σ a ( T ) of the Weyl essential approximate-point spectrum σ wa ( T ) is the set of all isolated points of the spectrum which are eigenvalues of finite multiplicity. In this note, we study the stability of property ( w ) for a polaroid operator T acting on a Banach space, under perturbations by finite rank operators, by nilpotent operators and, more generally, by algebraic operators commuting with T.

Unbounded operatorDiscrete mathematicsNumerical AnalysisPure mathematicsAlgebra and Number TheoryApproximation propertyProperty (w)Weyl’s theoremsFredholm operatorSpectrum (functional analysis)Banach spaceProperty (w) Weyl’s theorems Polaroid operatorsFinite-rank operatorOperator theoryBounded operatorPolaroid operatorsDiscrete Mathematics and CombinatoricsGeometry and TopologyMathematicsLinear Algebra and its Applications
researchProduct

On the operators which are invertible modulo an operator ideal

2001

Atkinson [3] studied the operators which are left invertible $i(X, Y) or right invertible $T{X, Y) modulo /C, with K. the compact operators. He proved that an operator T € C(X, Y) belongs to <£/ or $ r if and only if the kernel and the range of T are complemented and additionally, the kernel is finite dimensional or the range is finite codimensional, respectively. Yood [19] obtained some perturbation results for these classes and Lebow and Schechter [12] proved that the inessential operators form the perturbation class for $,(A") and $r{X). Yang [18] extended some results of ^3, 19] to operators invertible modulo W, with W the weakly compact operators. His aim was to study a generalised Fre…

Discrete mathematicsElliptic operatorWeak operator topologyGeneral MathematicsFinite-rank operatorOperator theoryCompact operatorOperator normStrictly singular operatorMathematicsQuasinormal operatorBulletin of the Australian Mathematical Society
researchProduct

Property (gb) through local spectral theory

2014

Property (gb) for a bounded linear operator T on a Banach space X means that the points c of the approximate point spectrum for which c I-T is upper semi B-Weyl are exactly the poles of the resolvent. In this paper we shall give several characterizations of property (gb). These characterizations are obtained by using typical tools from local spectral theory. We also show that property (gb) holds for large classes of operators and prove the stability of property (gb) under some commuting perturbations.

local spectral theory. Weyl type theoremsMathematical Proceedings of the Royal Irish Academy
researchProduct

Variations on Weyl's theorem

2006

AbstractIn this note we study the property (w), a variant of Weyl's theorem introduced by Rakočević, by means of the localized single-valued extension property (SVEP). We establish for a bounded linear operator defined on a Banach space several sufficient and necessary conditions for which property (w) holds. We also relate this property with Weyl's theorem and with another variant of it, a-Weyl's theorem. We show that Weyl's theorem, a-Weyl's theorem and property (w) for T (respectively T*) coincide whenever T* (respectively T) satisfies SVEP. As a consequence of these results, we obtain that several classes of commonly considered operators have property (w).

Intersection theoremDiscrete mathematicsWeyl's theoremsPure mathematicsPicard–Lindelöf theoremProperty (w)Applied MathematicsLeast-upper-bound propertyBanach spaceLocalized SVEPBounded operatorDanskin's theoremBrowder's theoremsMathematics::Representation TheoryBrouwer fixed-point theoremBounded inverse theoremAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Weyl's and Browder's theorems through the quasi-nilpotent part

2006

Weyl and Browder type theorems are characterized by means the quasi-nilpotent part

Settore MAT/05 - Analisi MatematicaQuasi-nilpotent part local spectral theory Weyl type theorems
researchProduct

A variation on Weyl's theorem

2005

In this note we study the property , a variant of Weyl's theorem introduced by Rakočević, by means of the localized single-valued extension property (SVEP). We establish for a bounded linear operator defined on a Banach space several sufficient and necessary conditions for which property holds. We also relate this property with Weyl's theorem and with another variant of it, a-Weyl's theorem. We show that Weyl's theorem, a-Weyl's theorem and property for T (respectively ) coincide whenever (respectively T) satisfies SVEP. As a consequence of these results, we obtain that several classes of commonly considered operators have property .

researchProduct

On Drazin invertibility

2008

The left Drazin spectrum and the Drazin spectrum coincide with the upper semi-B-Browder spectrum and the B-Browder spectrum, respectively. We also prove that some spectra coincide whenever T or T* satisfies the single-valued extension property.

Mathematics::Functional AnalysisPure mathematicsProperty (philosophy)Applied MathematicsGeneral MathematicsMathematics::Rings and AlgebrasSpectrum (functional analysis)Extension (predicate logic)Mathematics::Geometric TopologyMathematics::Algebraic TopologySpectral lineAlgebraDrazin invertible operatorsMathematicsProceedings of the American Mathematical Society
researchProduct

Weyl's theoren, a-Weyl's theorem and single valued extension property

2005

researchProduct

Weyl's theorem for perturbations of paranormal operators

2007

A bounded linear operator T ∈ L(X) on a Banach space X is said to satisfy "Weyl's theorem" if the complement in the spectrum of the Weyl spectrum is the set of all isolated points of the spectrum which are eigenvalues of finite multiplicity. In this paper we show that if T is a paranormal operator on a Hilbert space, then T + K satisfies Weyl's theorem for every algebraic operator K which commutes with T.

Unbounded operatorPure mathematicsApplied MathematicsGeneral MathematicsHilbert spaceBanach spaceMathematics::Spectral TheoryCompact operatorOperator spaceBounded operatorsymbols.namesakesymbolsWeyl transformationContraction (operator theory)MathematicsProceedings of the American Mathematical Society
researchProduct

Generalized Weyl's theorem and quasi-affiniy.

2010

A bounded operator T in L(X) acting on a Banach space X is said to satisfy generalized Weyl's theorem if the complement in the spectrum of the B-Weyl spectrum is the set of all eigenvalues which are isolated points of the spectrum. In this paper we prove that generalized Weyl's theorem holds for several classes of operators, extending previous results obtained in [24] and [15]. We also consider the preservation of generalized Weyl's theorem between two operators T in L(X), S in L(Y ) in the case that these are intertwined by a quasi-affinity A in L(X; Y ), or in the more general case that T and S are asymptotically intertwined by A.

Settore MAT/05 - Analisi MatematicaTrasformazioni quasi affini e Teoremi di Weyl
researchProduct

Incomparable Banach spaces and operator semigroups

2002

Using the notions of total incomparability and total coincomparability of Banach spaces, we define two families of operator semigroups. We show that these semigroups are minimal, in the sense that they admit a perturbative characterization. Moreover, they allow us to characterize the corresponding incomparability classes.

Discrete mathematicsPure mathematicsOperator (computer programming)Approximation propertyGeneral MathematicsBanach spaceSpecial classes of semigroupsBanach manifoldFinite-rank operatorCharacterization (mathematics)C0-semigroupMathematicsArchiv der Mathematik
researchProduct

Quasi-Fredholm operators and localized SVEP

2007

researchProduct

Generalized Browder’s Theorem and SVEP

2007

A bounded operator \(T \in L(X), X\) a Banach space, is said to verify generalized Browder’s theorem if the set of all spectral points that do not belong to the B-Weyl’s spectrum coincides with the set of all poles of the resolvent of T, while T is said to verify generalized Weyl’s theorem if the set of all spectral points that do not belong to the B-Weyl spectrum coincides with the set of all isolated points of the spectrum which are eigenvalues. In this article we characterize the bounded linear operators T satisfying generalized Browder’s theorem, or generalized Weyl’s theorem, by means of localized SVEP, as well as by means of the quasi-nilpotent part H0(λI − T) as λ belongs to certain …

Unbounded operatorDiscrete mathematicsPure mathematicsGeneral MathematicsSpectrum (functional analysis)Banach spaceBounded operatorSettore MAT/05 - Analisi MatematicaBounded functionSVEP Fredholm theory generalized Weyl’s theorem and generalized Browder’s theoremMathematics::Representation TheoryBounded inverse theoremEigenvalues and eigenvectorsResolventMathematicsMediterranean Journal of Mathematics
researchProduct

Property (w) and perturbations

2007

A bounded linear operator T ∈ L(X) defined on a Banach space X satisfies property (w), a variant of Weyl’s theorem, if the complement in the approximate point spectrum σa(T ) of the Weyl essential approximate spectrum σwa(T ) coincides with the set of all isolated points of the spectrum which are eigenvalues of finite multiplicity. In this note, we study the stability of property (w), for a bounded operator T acting on a Banach space, under perturbations by finite rank operators, by nilpotent operator and quasi-nilpotent operators commuting with T .

Discrete mathematicsPure mathematicsApproximation propertyLocalized SVEP Weyl's theorems Browder's theorems PropertyApplied MathematicsBanach spaceFinite-rank operatorCompact operatorStrictly singular operatorBounded operatorSettore MAT/05 - Analisi MatematicaBounded inverse theoremC0-semigroupAnalysisMathematics
researchProduct

Single valued extension property and semi-Browder spectra

2004

researchProduct

On riesz and inessential operators

1989

AlgebraGeneral MathematicsMathematicsMathematische Zeitschrift
researchProduct

A characterization of riesz operators

1987

Pure mathematicsRiesz potentialRiesz representation theoremGeneral MathematicsSingular integral operators of convolution typeCharacterization (mathematics)MathematicsMathematische Zeitschrift
researchProduct

Property (w) and perturbations II

2008

AbstractThis note is a continuation of a previous article [P. Aiena, M.T. Biondi, Property (w) and perturbations, J. Math. Anal. Appl. 336 (2007) 683–692] concerning the stability of property (w), a variant of Weyl's theorem, for a bounded operator T acting on a Banach space, under finite-dimensional perturbations K commuting with T. A counterexample shows that property (w) in general is not preserved under finite-dimensional perturbations commuting with T, also under the assumption that T is a-isoloid.

Weyl's theoremsLocalized SVEP Weyl's theorems Browder's theorems Property (w)Property (w)Applied MathematicsLocalized SVEPBrowder's theoremsAnalysis
researchProduct

A Unifying Approach to Weyl Type Theorems for Banach Space Operators

2013

Weyl type theorems have been proved for a considerably large number of classes of operators. In this paper, by introducing the class of quasi totally hereditarily normaloid operators, we obtain a theoretical and general framework from which Weyl type theorems may be promptly established for many of these classes of operators. This framework also entails Weyl type theorems for perturbations f(T + K), where K is algebraic and commutes with T, and f is an analytic function, defined on an open neighborhood of the spectrum of T + K, such that f is non constant on each of the components of its domain.

Discrete mathematicsClass (set theory)Algebra and Number TheorySpectrum (functional analysis)Banach spaceType (model theory)Domain (mathematical analysis)Weyl type theoremsSettore MAT/05 - Analisi MatematicaAlgebraic numberConstant (mathematics)AnalysisMathematicsAnalytic functionIntegral Equations and Operator Theory
researchProduct

Browder's theorems through localized SVEP

2005

A bounded linear operator T ∈ L(X) on aBanach space X is said to satisfy “Browder’s theorem” if the Browder spectrum coincides with the Weyl spectrum. T ∈ L(X) is said to satisfy “a-Browder’s theorem” if the upper semi-Browder spectrum coincides with the approximate point Weyl spectrum. In this note we give several characterizations of operators satisfying these theorems. Most of these characterizations are obtained by using a localized version of the single-valued extension property of T. In the last part we shall give some characterizations of operators for which “Weyl’s theorem” holds.

CombinatoricsMathematics::Functional AnalysisOperator (computer programming)General MathematicsSpectrum (functional analysis)PropertyOperatorExtension (predicate logic)Space (mathematics)theorem holdsMathematics::Algebraic TopologyBounded operatorMathematics
researchProduct

The perturbation classes problem for closed operators

2017

We compare the perturbation classes for closed semi-Fredholm and Fredholm operators with dense domain acting between Banach spaces with the corresponding perturbation classes for bounded semi-Fredholm and Fredholm operators. We show that they coincide in some cases, but they are different in general. We describe several relevant examples and point out some open problems.

Mathematics::Functional AnalysisPure mathematicsMathematics::Operator AlgebrasGeneral Mathematics010102 general mathematicsMathematical analysisBanach spacePerturbation (astronomy)Fredholm integral equationMathematics::Spectral TheoryOperator theory01 natural sciencesFredholm theorysymbols.namesakeMathematics::K-Theory and HomologyBounded function0103 physical sciencessymbols010307 mathematical physics0101 mathematicsMathematicsFilomat
researchProduct

Property (w) under compact or Riesz perturbations

2010

Si studia la permanenza della proprietà (w), una variante del Teorema di Weyl, nel caso che un operatore sia perturbato da un operatore compatto oppure di Riesz

Property (w) Riesz operators
researchProduct

Duggal B. P.: Polaroid operators satysfing Weyl's theorem

2006

researchProduct

Duggal, B. Kubrusly C.: Weyl's theorem for posinormal operators

2005

researchProduct

Cao, X; Guo M.; Meng. B.: Weyl type theorems for p-hyponormal and M-hyponormal operators

2004

researchProduct

Bourhim A., Chidume C.E. : The single valued extension oproperty for bilateral operator weighted shifts.

2005

researchProduct

Zquitti: A note on generalized Weyl's theorem.

2006

researchProduct

Su, Wei Gang, Zhong Huai Jie: The generalized West decomposition of operators and other compact perturbations problems

2006

researchProduct

Gonzales M.; Martinon A.: Operational quantities derived from the minimum modulus.

2006

researchProduct

Oudghiri M: Weyl's and Browder's theorems for operators satysfing the SVEP

2004

researchProduct