6533b860fe1ef96bd12c324f

RESEARCH PRODUCT

Property (w) and perturbations

Pietro AienaMaria Teresa Biondi

subject

Discrete mathematicsPure mathematicsApproximation propertyLocalized SVEP Weyl's theorems Browder's theorems PropertyApplied MathematicsBanach spaceFinite-rank operatorCompact operatorStrictly singular operatorBounded operatorSettore MAT/05 - Analisi MatematicaBounded inverse theoremC0-semigroupAnalysisMathematics

description

A bounded linear operator T ∈ L(X) defined on a Banach space X satisfies property (w), a variant of Weyl’s theorem, if the complement in the approximate point spectrum σa(T ) of the Weyl essential approximate spectrum σwa(T ) coincides with the set of all isolated points of the spectrum which are eigenvalues of finite multiplicity. In this note, we study the stability of property (w), for a bounded operator T acting on a Banach space, under perturbations by finite rank operators, by nilpotent operator and quasi-nilpotent operators commuting with T .

10.1016/j.jmaa.2007.02.084http://hdl.handle.net/10447/15629