6533b855fe1ef96bd12b001f

RESEARCH PRODUCT

Property (w) for perturbations of polaroid operators

Jesús R. GuillénPietro AienaPedro Peña

subject

Unbounded operatorDiscrete mathematicsNumerical AnalysisPure mathematicsAlgebra and Number TheoryApproximation propertyProperty (w)Weyl’s theoremsFredholm operatorSpectrum (functional analysis)Banach spaceProperty (w) Weyl’s theorems Polaroid operatorsFinite-rank operatorOperator theoryBounded operatorPolaroid operatorsDiscrete Mathematics and CombinatoricsGeometry and TopologyMathematics

description

Abstract A bounded linear operator T ∈ L ( X ) acting on a Banach space satisfies property ( w ) , a variant of Weyl’s theorem, if the complement in the approximate point spectrum σ a ( T ) of the Weyl essential approximate-point spectrum σ wa ( T ) is the set of all isolated points of the spectrum which are eigenvalues of finite multiplicity. In this note, we study the stability of property ( w ) for a polaroid operator T acting on a Banach space, under perturbations by finite rank operators, by nilpotent operators and, more generally, by algebraic operators commuting with T.

https://doi.org/10.1016/j.laa.2007.10.022