0000000000530578

AUTHOR

Jesús R. Guillén

showing 5 related works from this author

Property (R) for Bounded Linear Operators

2011

We introduce the spectral property (R), for bounded linear operators defined on a Banach space, which is related to Weyl type theorems. This property is also studied in the framework of polaroid, or left polaroid, operators.

Discrete mathematicsProperty (philosophy)Settore MAT/05 - Analisi MatematicaApproximation propertyGeneral MathematicsBounded functionLinear operatorsBanach spaceProperty (R) polaroid operatorsOperator theoryType (model theory)Operator normMathematicsMediterranean Journal of Mathematics
researchProduct

Property (R) under perturbations

2012

Property (R) holds for a bounded linear operator $${T \in L(X)}$$ , defined on a complex infinite dimensional Banach space X, if the isolated points of the spectrum of T which are eigenvalues of finite multiplicity are exactly those points λ of the approximate point spectrum for which λI − T is upper semi-Browder. In this paper we consider the permanence of this property under quasi nilpotent, Riesz, or algebraic perturbations commuting with T.

Discrete mathematicsProperty (R)Mathematics::Functional AnalysisPure mathematicsGeneral MathematicsWeyl's theoremSpectrum (functional analysis)Banach spaceMultiplicity (mathematics)Bounded operatorNilpotentSettore MAT/05 - Analisi MatematicaPoint (geometry)Algebraic numberEigenvalues and eigenvectorsMathematics
researchProduct

Property (w) for perturbations of polaroid operators

2008

Abstract A bounded linear operator T ∈ L ( X ) acting on a Banach space satisfies property ( w ) , a variant of Weyl’s theorem, if the complement in the approximate point spectrum σ a ( T ) of the Weyl essential approximate-point spectrum σ wa ( T ) is the set of all isolated points of the spectrum which are eigenvalues of finite multiplicity. In this note, we study the stability of property ( w ) for a polaroid operator T acting on a Banach space, under perturbations by finite rank operators, by nilpotent operators and, more generally, by algebraic operators commuting with T.

Unbounded operatorDiscrete mathematicsNumerical AnalysisPure mathematicsAlgebra and Number TheoryApproximation propertyProperty (w)Weyl’s theoremsFredholm operatorSpectrum (functional analysis)Banach spaceProperty (w) Weyl’s theorems Polaroid operatorsFinite-rank operatorOperator theoryBounded operatorPolaroid operatorsDiscrete Mathematics and CombinatoricsGeometry and TopologyMathematicsLinear Algebra and its Applications
researchProduct

Weyl's theorem for perturbations of paranormal operators

2007

A bounded linear operator T ∈ L(X) on a Banach space X is said to satisfy "Weyl's theorem" if the complement in the spectrum of the Weyl spectrum is the set of all isolated points of the spectrum which are eigenvalues of finite multiplicity. In this paper we show that if T is a paranormal operator on a Hilbert space, then T + K satisfies Weyl's theorem for every algebraic operator K which commutes with T.

Unbounded operatorPure mathematicsApplied MathematicsGeneral MathematicsHilbert spaceBanach spaceMathematics::Spectral TheoryCompact operatorOperator spaceBounded operatorsymbols.namesakesymbolsWeyl transformationContraction (operator theory)MathematicsProceedings of the American Mathematical Society
researchProduct

A Unifying Approach to Weyl Type Theorems for Banach Space Operators

2013

Weyl type theorems have been proved for a considerably large number of classes of operators. In this paper, by introducing the class of quasi totally hereditarily normaloid operators, we obtain a theoretical and general framework from which Weyl type theorems may be promptly established for many of these classes of operators. This framework also entails Weyl type theorems for perturbations f(T + K), where K is algebraic and commutes with T, and f is an analytic function, defined on an open neighborhood of the spectrum of T + K, such that f is non constant on each of the components of its domain.

Discrete mathematicsClass (set theory)Algebra and Number TheorySpectrum (functional analysis)Banach spaceType (model theory)Domain (mathematical analysis)Weyl type theoremsSettore MAT/05 - Analisi MatematicaAlgebraic numberConstant (mathematics)AnalysisMathematicsAnalytic functionIntegral Equations and Operator Theory
researchProduct