0000000000530577

AUTHOR

Pedro Peña

Property (R) for Bounded Linear Operators

We introduce the spectral property (R), for bounded linear operators defined on a Banach space, which is related to Weyl type theorems. This property is also studied in the framework of polaroid, or left polaroid, operators.

research product

Property (R) under perturbations

Property (R) holds for a bounded linear operator $${T \in L(X)}$$ , defined on a complex infinite dimensional Banach space X, if the isolated points of the spectrum of T which are eigenvalues of finite multiplicity are exactly those points λ of the approximate point spectrum for which λI − T is upper semi-Browder. In this paper we consider the permanence of this property under quasi nilpotent, Riesz, or algebraic perturbations commuting with T.

research product

Property (w) for perturbations of polaroid operators

Abstract A bounded linear operator T ∈ L ( X ) acting on a Banach space satisfies property ( w ) , a variant of Weyl’s theorem, if the complement in the approximate point spectrum σ a ( T ) of the Weyl essential approximate-point spectrum σ wa ( T ) is the set of all isolated points of the spectrum which are eigenvalues of finite multiplicity. In this note, we study the stability of property ( w ) for a polaroid operator T acting on a Banach space, under perturbations by finite rank operators, by nilpotent operators and, more generally, by algebraic operators commuting with T.

research product

Variations on Weyl's theorem

AbstractIn this note we study the property (w), a variant of Weyl's theorem introduced by Rakočević, by means of the localized single-valued extension property (SVEP). We establish for a bounded linear operator defined on a Banach space several sufficient and necessary conditions for which property (w) holds. We also relate this property with Weyl's theorem and with another variant of it, a-Weyl's theorem. We show that Weyl's theorem, a-Weyl's theorem and property (w) for T (respectively T*) coincide whenever T* (respectively T) satisfies SVEP. As a consequence of these results, we obtain that several classes of commonly considered operators have property (w).

research product

A Unifying Approach to Weyl Type Theorems for Banach Space Operators

Weyl type theorems have been proved for a considerably large number of classes of operators. In this paper, by introducing the class of quasi totally hereditarily normaloid operators, we obtain a theoretical and general framework from which Weyl type theorems may be promptly established for many of these classes of operators. This framework also entails Weyl type theorems for perturbations f(T + K), where K is algebraic and commutes with T, and f is an analytic function, defined on an open neighborhood of the spectrum of T + K, such that f is non constant on each of the components of its domain.

research product