0000000000519122
AUTHOR
Erika Secco
New Potential Therapeutic Approach for the Treatment of B-Cell Malignancies Using Chlorambucil/Hydroxychloroquine-Loaded Anti-CD20 Nanoparticles
Current B-cell disorder treatments take advantage of dose-intensive chemotherapy regimens and immunotherapy via use of monoclonal antibodies. Unfortunately, they may lead to insufficient tumor distribution of therapeutic agents, and often cause adverse effects on patients. In this contribution, we propose a novel therapeutic approach in which relatively high doses of Hydroxychloroquine and Chlorambucil were loaded into biodegradable nanoparticles coated with an anti-CD20 antibody. We demonstrate their ability to effectively target and internalize in tumor B-cells. Moreover, these nanoparticles were able to kill not only p53 mutated/deleted lymphoma cell lines expressing a low amount of CD20…
Development of a human-SCID lymphoma as a model to evaluate the therapeutic effect of Rituximab
New Therapeutic Approach for the Treatment of B-Cell Disorders Using Chlorambucil/Hydroxychloroquine-Loaded AntiCD20 Nanoparticles
Abstract Abstract 158 B-cell disorders show highly variable clinical courses, ranging between indolent diseases like the chronic lymphocytic leukemia (CLL) and highly aggressive lymphoproliferative disorders like Burkitt Lymphoma. The treatments of these disorders have been characterized by the development of new approaches, including dose-intensive chemotherapy regimens and immunotherapy via monoclonal antibodies (Ab). Despite the promising survival rates, these multi-agent treatments are flawed by a high degree of toxicity and a significant fraction of patients do not respond. The use of core shell nanoparticles design with specific Ab-coating represents a new strategy to target only tumo…
Bispecific antibodies targeting tumor-associated antigens and neutralizing complement regulators increase the efficacy of antibody-based immunotherapy in mice.
The efficacy of antibody-based immunotherapy is due to the activation of apoptosis, the engagement of antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity (CDC). We developed a novel strategy to enhance CDC using bispecific antibodies (bsAbs) that neutralize the C-regulators CD55 and CD59 to enhance C-mediated functions. Two bsAbs (MB20/55 and MB20/59) were designed to recognize CD20 on one side. The other side neutralizes CD55 or CD59. Analysis of CDC revealed that bsAbs could kill 4-25 times more cells than anti-CD20 recombinant antibody in cell lines or cells isolated from patients with chronic lymphocytic leukemia. The pharmacokinetics of the bsAbs was evaluate…
P-Selectin Glycoprotein Ligand-1 as a Potential Target for Humoral Immunotherapy of Multiple Myeloma (Supplementry Material)
Monoclonal antibodies (mAbs), successfully adopted in the treatment of several haematological malignancies, have proved almost ineffective in multiple myeloma (MM), because of the lack of an appropriate antigen for targeting and killing MM cells. Here, we demonstrate that PSGL1, the major ligand of P-Selectin, a marker of plasmacytic differentiation expressed at high levels on normal and neoplastic plasma cells, may represent a novel target for mAb-mediated MM immunotherapy. The primary effectors of mAb-induced cell-death, complement-mediated lysis (CDC) and antibody-dependent cellmediated cytotoxicity (ADCC), were investigated using U266B1 and LP1 cell-lines as models. Along with immunolog…
An update on the xenograft and mouse models suitable for investigating new therapeutic compounds for the treatment of B-cell malignancies
B-cell malignancies account for over the 90% of all lymphoid neoplasms. The clonal proliferations of B-cells show a high degree of variation in terms of clinical and presenting features, histopathology, immuophenotype, and genetics. Primary tumor samples are useful for examining the characteristics of a patients own tumor, although both primary leukemic cells and cell lines provide an initial step for screening novel compounds for their activity in some hematological malignancies, they should be followed by models in intact animals. In this review, we try to summarize the animal models generated to study B-cell malignancies, in particular, B-cell lymphoma, B-cell CLL and MM that represent t…
In vivo biodistribution and lifetime analysis of cy5.5-conjugated rituximab in mice bearing lymphoid tumor xenograft using time-domain near-infrared optical imaging.
Rituximab is a chimeric monoclonal antibody directed against human CD20 antigen, which is expressed on B-cell lymphocytes and on the majority of B-cell lymphoid malignancies. Herein we report the conjugate of rituximab with the near-infrared (NIR) fluorophore Cy5.5 (RI-Cy5.5) as a tool for in vitro, in vivo, and ex vivo NIR time-domain (TD) optical imaging. In vitro, RI-Cy5.5 retained biologic activity and led to elevated cell-associated fluorescence on tumor cells. In vivo, TD optical imaging analysis of RI-Cy5.5 injected into lymphoma-bearing mice revealed a slow tumor uptake and a specific long-lasting persistence of the probe within the tumor. Biodistribution studies after intraperiton…