0000000000519157

AUTHOR

Maria Rosa Felice

showing 2 related works from this author

The solution behavior of dopamine in the presence of mono and divalent cations: A thermodynamic investigation in different experimental conditions

2021

The interactions of dopamine [2-(3,4-Dihydroxyphenyl)ethylamine, (Dop-)] with methylmercury(II) (CH3Hg+), magnesium(II), calcium(II), and tin(II) were studied in NaCl(aq) at different ionic strengths and temperatures. Different speciation models were obtained, mainly characterized by mononuclear species. Only for Sn2+ we observed the formation of binuclear complexes (M2L2 and M2LOH (charge omitted for simplicity)

Models MolecularCations DivalentDopaminePotentiometric titrationEnthalpyIonic bondingBiochemistryMicrobiologyArticleDivalentchemistry.chemical_compoundMetal complexesTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYSettore CHIM/01 - Chimica AnaliticaStability constantsMolecular Biologychemistry.chemical_classificationCatechol; Chemical speciation; Metal complexes; Sequestration; Stability constantsLigandHydrolysisOsmolar ConcentrationTemperatureSequestrationHydrogen-Ion ConcentrationQR1-502SolutionsKineticschemistrySpecific ion interaction theoryIonic strengthThermogravimetryCatecholPhysical chemistryThermodynamicsChemical speciationEthylamine
researchProduct

The Effect of Metal Cations on the Aqueous Behavior of Dopamine. Thermodynamic Investigation of the Binary and Ternary Interactions with Cd2+, Cu2+ a…

2021

The interactions of dopamine [2-(3,4-Dihydroxyphenyl)ethylamine, (Dop−)] with cadmium(II), copper(II) and uranyl(VI) were studied in NaCl(aq) at different ionic strengths (0 ≤ I/mol dm−3 ≤ 1.0) and temperatures (288.15 ≤ T/K ≤ 318.15). From the elaboration of the experimental data, it was found that the speciation models are featured by species of different stoichiometry and stability. In particular for cadmium, the formation of only MLH, ML and ML2 (M = Cd2+; L = dopamine) species was obtained. For uranyl(VI) (UO22+), the speciation scheme is influenced by the use of UO2(acetate)2 salt as a chemical; in this case, the formation of ML2, MLOH and the ternary MLAc (Ac = acetate) species in a …

Catechol; Chemical speciation; Metal complexes; Sequestration; Stability constantsMolecular Structurechemical speciation; metal complexes; catechol; sequestration; stability constantsDopaminePharmaceutical ScienceOrganic chemistrysequestrationmetal complexesSodium Chloridecatecholchemical speciationUranium CompoundsAnalytical Chemistrystability constantsQD241-441Chemistry (miscellaneous)CationsDrug DiscoveryMolecular MedicineThermodynamicsSettore CHIM/01 - Chimica AnaliticaPhysical and Theoretical ChemistryCopperCadmiumMolecules
researchProduct