6533b822fe1ef96bd127d7d7
RESEARCH PRODUCT
The solution behavior of dopamine in the presence of mono and divalent cations: A thermodynamic investigation in different experimental conditions
Rosalia Maria CigalaAlberto PettignanoAnna IrtoAntonio GigliutoFrancesco CreaConcetta De StefanoMaria Rosa FeliceDemetrio MileaStefano Materazzisubject
Models MolecularCations DivalentDopaminePotentiometric titrationEnthalpyIonic bondingBiochemistryMicrobiologyArticleDivalentchemistry.chemical_compoundMetal complexesTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYSettore CHIM/01 - Chimica AnaliticaStability constantsMolecular Biologychemistry.chemical_classificationCatechol; Chemical speciation; Metal complexes; Sequestration; Stability constantsLigandHydrolysisOsmolar ConcentrationTemperatureSequestrationHydrogen-Ion ConcentrationQR1-502SolutionsKineticschemistrySpecific ion interaction theoryIonic strengthThermogravimetryCatecholPhysical chemistryThermodynamicsChemical speciationEthylaminedescription
The interactions of dopamine [2-(3,4-Dihydroxyphenyl)ethylamine, (Dop-)] with methylmercury(II) (CH3Hg+), magnesium(II), calcium(II), and tin(II) were studied in NaCl(aq) at different ionic strengths and temperatures. Different speciation models were obtained, mainly characterized by mononuclear species. Only for Sn2+ we observed the formation of binuclear complexes (M2L2 and M2LOH (charge omitted for simplicity)
year | journal | country | edition | language |
---|---|---|---|---|
2021-09-01 |