Sequestering ability of polyaminopolycarboxylic ligands towards dioxouranium(VI) cation
Abstract In the present paper, some results of an investigation (at t = 25 °C by potentiometry, ISE-H+ glass electrode) on the sequestering ability of five different polyaminopolycarboxylic ligands [Nitrilotriacetate (NTA), ethylenediamine-N,N,N′,N′-tetraacetate (EDTA), ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetate (EGTA), diethylenetriamine-N,N,N′,N″,N″-pentaacetate (DTPA), triethylenetetraamine-N,N,N′,N″,N′′′,N′′′-hexaacetate (TTHA)] towards dioxouranium(VI) cation in sodium chloride aqueous solutions, at I = 0.7 mol L−1 are reported. Calculations performed on potentiometric data gave evidence of the formation of the following species (log β in parenthesis): UO2(NTA)H0 (12…
Equilibrium Studies in Natural Fluids. A Chemical Speciation Model for the Major Constituents of Seawater.
AbstractThe speciation of CI−, OH− and SO42- in synthetic sea water has been studied by Potentiometric measurements (pH-metric and ISE-Na methods) and by literature data analysis, using a well tested complex formation model. Stability constants, together with distribution of hypothesised species in synthetic sea water, as a function of temperature and salinity, are reported. The speciation model proposed in this work is discussed on the basis of chemical and statistical considerations. Comparison with some literature sea water models is given.
Thermodynamic parameters for the formation of glycine complexes with magnesium(II), calcium(II), lead(II), manganese(II), cobalt(II), nickel(II), zinc(II) and cadmium(II) at different temperatures and ionic strengths, with particular reference to natural fluid conditions
Abstract Protonation constants and Mg 2+ , Ca 2+ , Pb 2+ , Mn 2+ -, Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ and Cd 2+ glycine complex formation constants have been determined in different aqueous media at different temperatures. Salt effects are explained by a complex formation model which takes into account the formation of weak species. From the temperature dependence of the formation constants, thermodynamic parameters ΔH θ (and in some cases ΔC θ p ) have been obtained. A rigorous analysis of literature data, together with experimental findings, allows recommended formation parameters, in the ranges 0 ≤ I e ≤ 1 mol l −1 ( I e is the effective ionic strength) and 5°C ≤ T ≤ 45°C, to be obt…
Speciation of Al3+ in fairly concentrated solutions (20 to 200 mmol L-1) at I = 1 mol L-1 (NaNO3), in the acidic pH range, at different temperatures.
AbstractThe hydrolysis of Al3+ was studied in aqueous 1 mol L−1 NaNO3 solution at different concentrations (20–200 mmol L−1) and temperatures (283.15–343.15 K) by potentiometry (ISE-H+, glass electrode). Many different speciation models were considered in the calculations and it was found that the best model is represented by the following species: Al(OH)2+, Al(OH)45+, Al13(OH)327+. Hydrolysis constants and enthalpy changes at different temperatures are reported.
Modeling ATP protonation and activity coefficients in NaClaq and KClaq by SIT and Pitzer equations.
Abstract The acid–base properties of Adenosine 5′-triphosphate (ATP) in NaCl and KCl aqueous solutions at different ionic strengths (0 I / mol L − 1 ≤ 5 for NaCl aq , 0 I / mol L − 1 ≤ 3 for KCl aq ) and at t = 25 °C were investigated. A selection of literature data on ATP protonation constants and on activity isopiestic coefficients was performed, together with new potentiometric measurements (by ISE-H + , glass electrode). Both literature and new experimental data were used to model the dependence on ionic strength and ionic medium of ATP protonation by SIT (Specific ion Interaction Theory) and Pitzer equations. In addition to values of first and second ATP protonation constants in…
Speciation of chitosan-phosphate and chitosan-nucleotide systems in an NaCl aqueous solution
AbstractThe speciation of chitosan (310 kDa) with organic (adenosine 5’-monophosphate, AMP, and adenosine 5’-triphosphate, ATP), and inorganic phosphorus containing ligands (phosphate and pyrophosphate) was investigated in NaCl aqueous solutions at I = 0.1mol L−1 and T = 25°C. For all the systems, the investigated results obtained gave evidence for the formation of (chitosan)LHi complex species (L = nucleotides, phosphate and pyrophosphate; i = 1 to 4, but for AMP, i = 1 to 3). The stability data of complex species were used to calculate the sequestering ability of chitosan towards phosphorus compounds considered here, expressed as pL50 i.e., – log(total chitosan concentration) necessary to…
Hydrolysis of methyltin(IV) trichloride in aqueous NaCl and NaNO3 solutions at different ionic strengths and temperatures
The hydrolysis of methyltin(IV) trichloride (CH 3 SnCl 3 ) has been studied in aqueous NaCl and NaNO 3 solutions (0 < l/mol dm -3 ≤1), at different temperatures (15 ≤ T/°C ≤ 45) by potentiometric measurements (H + -glass electrode). By considering the generic hydrolytic reaction pCH 3 Sn 3+ + qH 2 O = (CH 3 Sn) p (OH) q 3p-q +qH + (logβ pq ), we have the formation of five species and logβ 12 = -3.36, logβ 13 = -8.99, logβ 14 = -20.27 and logβ 25 = -7.61. The first hydrolysis step is measurable only at very low pH values and was not determined: a rough estimate of the hydrolysis constant is logβ 11 = -1.5 (± 0.5). The dependence on ionic strength of logβ pq is quite different in NaNO 3 and N…
Speciation of organotin compounds in NaCl aqueous solution. Interaction of mono-, di- and triorganotin(IV) cations with nucleotides 5’ monophosphates
Formation constants for complex species of mono-, di- and tri-alkyltin(IV) cations with somenucleotide 5-monophosphates (AMP, UMP, IMP and GMP) are reported, atT=25◦CandatI=0.16 mol l−1(NaCl). The investigation was performed in the light of speciation of organometalliccompounds in natural fluids in the presence of nucleotides whose biological importance is wellrecognized. The simple and mixed hydrolytic complex species formed in all the systems investigatedin the pH range 3–9 are (L=nucleotide; M=organotin cation RxSn(4−x)+, withx=1to3):ML+,ML(OH)0and ML(OH)2−for the system CH3Sn3+–L (L=AMP, IMP, UMP); ML0and ML(OH)−for the system (C2H5)2Sn2+–L (L=AMP, IMP, UMP); ML−, ML(OH)2−,MLH0and M2L(O…
Palladium(II) Complexes of Aminopolycarboxylic Ligands in Aqueous Solution
Thebindingcapacityof fiveaminopolycarboxylicligands(APCs)(nitrilotriacetate(NTA),ethylenediamine-N,N,N 0 , N 0 -tetraacetate (EDTA), (S,S)-ethylenediamine-N,N 0 -disuccinic acid (S,S-EDDS), diethylenetriamine-N,N,N 0 ,N 00 ,N 00 -pentaacetate (DTPA), and triethylenetetraamine-N,N,N 0 ,N 00 ,N 000 ,N 000 -hexaacetate (TTHA)) toward the palladium(II) ion was studied by potentiometric titrations (ISE-H + electrode) in NaNO3 and in NaClO4/NaI (at different molar ratios) solutions and by spectrophotometric titrations (only in NaClO4), at I = 0.1 mol 3 kg � 1 and at T = 298.15 K. The high stability of Pd 2+ -complexones species inhibits the formation of sparingly soluble hydroxo species until pH …
Risedronate complexes with Mg2+, Zn2+, Pb2+, and Cu2+: Species thermodynamics and sequestering ability in NaCl(aq) at different ionic strengths and at T = 298.15 K
Abstract In this paper, potentiometry and calorimetry were used to determine the thermodynamics of interaction between risedronate and four bivalent metal cations, namely: Mg2+, Zn2+, Pb2+, and Cu2+ in aqueous NaCl solutions at different ionic strengths and at T = 298.15 K. The data analysis allowed us to ascertain that the main species formed were the MLH2, MLH, ML and M2L; however scarcely soluble species precipitated at acidic pH values, between 4 and 7 depending on the metal cation involved, probably due to the formation of the neutral M2L(s) species. Comparison of the stability constants with other similar ligands suggests that metal complexation occurs through the phosphonate with an …
Interaction of UO2(2+) with ATP in aqueous ionic media.
Interaction of dioxouranium(VI) (uranyl) ion with ATP was studied by ligand/proton and metal/hydroxide displacement technique, at very low ionic strength and at I=0.15 mol L(-1), in aqueous Me4NCl and NaCl solutions, at t=25 degrees C. Measurements were carried out in the pH range 3-8.5, before the formation of precipitate. Computer analysis allowed us to find the quite stable species UO2(ATP)H2(0), UO2(ATP)H-, UO2(ATP)2-, UO2(ATP)2(6-), UO2(ATP)2H2(4-) and UO2(ATP)(OH)3- whose formation constants are (at I=0 mol L(-1)) logbeta(112)=18.21, logbeta(111)=14.70, logbeta(110)=9.14, logbeta(120)=12.84, logbeta(122)=24.82, and logbeta(11-1)=2.09, respectively. Different values were obtained in th…
Modeling the acid-base properties of molybdate(VI) in different ionic media, ionic strengths and temperatures, by EDH, SIT and Pitzer equations
This paper reports the results of a study on the determination of the protonation constants of MoO42 −, in NaClaq, NaNO3aq, KClaq, at different ionic strengths (0 < I/mol dm− 3 ≤ 5.0 in NaClaq, 0 < I/mol dm− 3 ≤ 3.0 in NaNO3aq and KClaq) and temperatures (278.15 ≤ T/K ≤ 318.15 in NaClaq, only 298.15 K in NaNO3aq and KClaq), by potentiometric (ISE-H+ glass electrode) and spectrophotometric (UV/Vis) titrations. After a critical analysis of results and literature findings, the proposed speciation model takes into account the formation of two monomeric and four heptameric species, namely: MoO4H−, MoO4H2, (MoO4)7H86 −, (MoO4)7H95 −, (MoO4)7H104 − and (MoO4)7H113 −. Due to the complexity of…
Chemical speciation of nucleotide 5′-monophosphates in the presence of biogenic amines
The interaction of adenosine-, uridine-, inosine- and guanosine-5’-monophosphates with protonated ethylenediamine, putrescine, cadaverine, spermidine and spermine, was studied potentiometrically, a...
Equilibrium studies in natural fluids: interactions of -PO43−, -P2O74−and -P3O105−with the major constituents of sea water
AbstractThe interaction of PiO(i+2)−(3i+1) (i = 1,2,3) with the major components of seawater has been studied potentiometrically, at 25°C, in an artificial seawater (Na+, K, Ca2+, Mg2+, Cl− and SO42−) at different salinities (5—45%o). Apparent protonation constants have been calculated, from potentiometric data, and estimated, using an appropriate complex formation model. Formation constants of complexes formed by phosphates and the cation of seawater (the inorganic content of seawater being considered as a single 1:1 salt) have been determined. The comparison between experimental and estimated results showed that a suitable complexation model can be used with a fairly good accuracy in pred…
Stability−Charge and Stability−Structure Relationships in the Binding of Dicarboxylic Ligands by Open-Chain Polyammonium Cations
The stability of complexes formed by 5 dicarboxylic ligands with 11 open-chain polyammonium cations (40 systems) was studied potentiometrically, in aqueous solution, at 25 °C. In all the systems ALHr species (A = amine, L = dicarboxylic ligand, r = 1 ... n; diamines n = 3, triamines n = 4, tetraamines n = 4 or 5) were found. Formation constants for the various complexes studied in this work, together with data for the analogous systems previously studied (20 systems), were examined as a function of charges involved in the formation reaction and of the structure of both the dicarboxylic ligand and the polyammonium cation. Structure generally has little effect on stability, while charges play…
Understanding the Solution Behavior of Epinephrine in the Presence of Toxic Cations: A Thermodynamic Investigation in Different Experimental Conditions
The interactions of epinephrine ((R)-(&minus
The solution behavior of dopamine in the presence of mono and divalent cations: A thermodynamic investigation in different experimental conditions
The interactions of dopamine [2-(3,4-Dihydroxyphenyl)ethylamine, (Dop-)] with methylmercury(II) (CH3Hg+), magnesium(II), calcium(II), and tin(II) were studied in NaCl(aq) at different ionic strengths and temperatures. Different speciation models were obtained, mainly characterized by mononuclear species. Only for Sn2+ we observed the formation of binuclear complexes (M2L2 and M2LOH (charge omitted for simplicity)
Equilibrium studies in natural waters: Speciation of phenolic compounds in synthetic seawater at different salinities
Interactions between some phenolic compounds and macro-constituents of synthetic seawater (Na{sup +}, K{sup +}, Ca{sup 2+}, Mg{sup 2+}, Cl{sup {minus}}, and SO{sub 4}{sup 2{minus}}), at 20, 35, and 45 {per_thousand} salinity, have been investigated potentiometrically by using the [H]-glass electrode. The formation constants of phenol, o- and p-cresol, o-a dn p-nitrophenol complexes with sodium, potassium, calcium, and magnesium ions have been determined in the ionic strength range 0 {le} I {le} 1 mol/L. A comparison between the apparent protonation constants of phenols determined in synthetic seawater, and those simulated by a suitable complex formation model, is discussed. The possibility …
Salt effects on the protonation of l-histidine and l-aspartic acid: a complex formation model
Abstract Protonation constants of l -histidine (histidinate: his − ) and l -aspartic acid (aspartate: asp 2− ) were determined potentiometrically, using the (H + ) glass electrode, in aqueous tetraethylammonium iodide (Et 4 NI), calcium chloride and sodium chloride solutions, at 0 −3 and 10 ⩽, T ⩽, 45 ° C. Differences in protonation constants determined in different salt media were explained by a complex formation model and, according to this model, the presence of the following species was hypothesized: Ca(his) + , CaH(his) 2+ , CaH 2 (his) 3+ Na(his) 0 , H 3 (his)X + , H 2 (his)X 0 , Et 4 N(his) 0 , Et 4 NH(his) + , Ca(asp) 0 , CaH(asp) + , CaH 2 (asp) 2+ , Na(asp) − , NaH(asp) 0 , H 3 (a…
Complexes of Azelaic and Diethylenetrioxydiacetic Acids with Na+, Mg2+, and Ca2+ in NaCl Aqueous Solutions, at 25 °C
Formation constants of Na + , Mg 2+ , and Ca 2+ complexes of azelaic and diethylenetrioxydiacetic acids have been determined by potentiometry (H + -glass electrode) at different ionic strengths (0 ≤ I ≤ 1 mol dm -3 ), at t = 25 °C. For all the systems the species ML and MHL have been found. The relative formation constants are reported together with the parameters for the dependence on ionic strength. Results are discussed in comparison with those for other carboxylic ligands. Speciation problems are considered also.
Evaluation of the sequestering ability of different complexones towards Ag+ ion
Abstract The interaction between Ag+ cation and different ligands was evaluated as a function of temperature and ionic strength by means of potentiometric techniques. Six aminopolycarboxylic (APCs) and aminopolyphosphonic (APPs) ligands were chosen, namely four APCs: nitrilotriacetic acid (NTA), ethylene-glycol-bis(2-aminoethylether)-N,N,N’,N’-tetraacetic acid (EGTA), ethylenediamine-N,N,N’,N’-tetraacetate (EDTA) and diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA)] and two APPs: [(1-hydroxyethane-1,1-diyl)bis(phosphonic acid) (HEDP) and [[(Phosphonomethyl)imino]bis[2,1-ethanediylnitrilobis(methylene)]] tetrakis-phosphonic acid (DTPP). Different mononuclear species with general formu…
The PAH composition of surface sediments from Stagnone coastal lagoon, Marsala (Italy)
Abstract This paper examines the presence, distribution, nature and sources of 22 Aromatic Hydrocarbons (PAHs), which are important environmentally and toxicologically, in sediments from the Stagnone coastal lagoon at Marsala (Italy). Analysis was performed by gas chromatography/mass spectrometry (GC/MS) with selected ion monitoring (SIM). The total concentration of polycyclic aromatic hydrocarbons ranged from 72 to 18381 μg/kg of dry matrix. The relative standard deviation (RSD) of the replicates on the concentrations of individual compounds ranged from 5% to 20%. The accuracy of method was estimated by analyzing “blank” samples added of known quantities of analytes and the recover percent…
Polyacrylate Protonation in Various Aqueous Ionic Media at Different Temperatures and Ionic Strengths
The protonation constants of the polyacrylate anion (molecular mass 2000 Da) in Et4NI, Me4NCl, LiCl, LiNO3, NaCl, NaNO3, and KCl aqueous solution, were determined in a wide range of ionic strengths. A three-parameter approximation was used to express protonation constants as a function of the dissociation degree α, and their dependence on ionic strength was considered using a simple polynomial expansion. Differences in log KH between different data in different media were interpreted in terms of weak complex formation between polyacrylate and alkali metal cations. Measurements were also performed at different temperatures (15 ≤ T/°C ≤ 55) in order to calculate enthalpy and entropy changes f…
Speciation Studies of Bifunctional 3-Hydroxy-4-Pyridinone Ligands in the Presence of Zn2+ at Different Ionic Strengths and Temperatures
The acid&ndash
Modelling of proton and metal exchange in the alginate biopolymer.
Acid-base behaviour of a commercial sodium alginate extracted from brown seaweed (Macrocystis pyrifera) has been investigated at different ionic strengths (0.1or=I/mol l(-1)or=1.0) and in different supporting electrolytes (Et4NI, NaCl, KCl, LiCl, NaCl+MgCl2), with the aim of examining the influence of ionic medium on the proton-binding capacity and of quantifying the strength of interaction with light metal ions in the perspective of speciation studies in natural aqueous systems. Potentiometric ([H+]-glass electrode) and titration calorimetric data were expressed as a function of the dissociation degree (alpha) using different models (Henderson-Hasselbalch modified, Högfeldt three parameter…
Quantitative parameters for the sequestering capacity of polyacrilates towards alkaline earth metal ions
The complex formation constants of polyacrylic (PAA) ligands (1.4</=logN</=2.4, N=number of monomer units) with calcium and magnesium ions were determined in different ionic media at different ionic strengths, 0</=I</=1 mol l(-1), at t=25 degrees C. Experimental pH-metric data in the presence of Ca(2+) or Mg(2+) were firstly analysed in terms of apparent protonation constants, logK(H*), using the "three parameter model" proposed by Hogfeldt; differences in logK(H*), determined in different ionic media, were interpreted in terms of complex species formation. The only species present in the system M-PAA (M=Ca(2+) or Mg(2+)) is ML(2): attempts to find species of different stoichiometry were un…
Speciazione di Sn(II) in presenza di leganti O-donatori di interesse biologico
Lo stagno è il ventiquattresimo elemento più abbondante nella crosta terrestre ed ha il più elevato numero di isotopi stabili (dieci). Generalmente questo elemento non viene annoverato tra gli inquinanti più importanti, in quanto lo stagno inorganico non risulta particolarmente tossico. Tuttavia, molti dei suoi sali lo sono. Infatti, la corrosione di contenitori in stagno da parte di cibi e bevande acide ha causato in passato numerosi intossicazioni ad opera di composti solubili di questo metallo. Inoltre, la bioalchilazione dello stagno inorganico porta alla formazione di composti ancor più nocivi per l’ambiente. Per tali ragioni, per esempio, la Food Standards Agency del Regno Unito ha im…
Sequestration of organomettalic compounds by synthetic and naturally occuring polycarboxylate ligands. Binding of monomethylmercury(II) by polyacrylic and alginic acids.
The sequestering capacity of synthetic and naturally occurring polycarboxylate ligands towards mono- methylmercury(II) was evaluated by stability quantitative data on the interaction of CH3Hgþ with different molecular weight synthetic polyacrylates (2 and 20 kDa average M.wt) and alginate (70– 100 kDa) extracted from brown algae Macrocystis pyrifera. The influence of ionic medium was evaluated by measurements on the CH3Hgþ-polyacrylate systems in NaNO3 medium at different ionic strengths (0.10, 0.25, 0.50 and 0.75mol Lÿ1), and a Debye–Hu¨ ckel type equation was used for the dependence of complex formation constants on ionic strength. Measurements on the CH3Hgþ - alginate system were carried…
Formation and Stability of Cadmium(II)/Phytate Complexes by Different Electrochemical Techniques. Critical Analysis of Results
In the present work the stability constants of various cadmium(II)/phytate (Phy) species were determined at T = 298.15 K in NaNO3(aq) at I = 0.1 mol·L−1 by DP-ASV (Differential Pulse Anodic Stripping Voltammetry) and by potentiometric titrations using an ISE-Cd2+. Cyclic voltammograms were also recorded to check the electrochemical behavior of cadmium in the presence of phytate. The results were analyzed together with previous data determined by ISE-H+ measurements. Data obtained were used to provide an exhaustive speciation scheme for the phytate/cadmium(II) system at different conditions, as well as a comprehensive representation of the binding ability of phytate toward cadmium(II). Diffe…
Speciation of polyelectrolytes in natural fluids Protonation and interaction of polymethacrylates with major components of seawater.
Acid–base properties of two sodium polymethacrylates (W= 4000 and 5400 Da) were studied potentiometrically in aqueous solution at 25 °C. Measurements were made in different salt solutions: LiCl 0.1–1.5, NaCl 0.1–2, KCl 0.1–2, Et4NI 0.1–0.75 mol l − 1 , and in artificial seawater in the salinity range 10 S 45. Protonation data were analysed by two different models and the dependence of the relative parameters on ionic strength were calculated. Measurements performed in interacting media (alkali metal chlorides and artificial seawater) were interpreted in terms of complex formation, and the relative formation parameters are reported. Previous data on the interaction of a higher molecular weig…
Sequestration of alkyltin(IV) cations by complexation with amino-polycarboxylic chelating agents
Abstract The binding capacity of four amino-polycarboxylic ligands (APCs) [nitrilotriacetate (NTA), ethylenediamine- N , N , N′ , N′ -tetraacetate (EDTA), (S,S)-ethylenediamine- N , N ′-disuccinic acid (S,S-EDDS) and diethylenetriamine- N , N , N′ , N″ , N″ -pentaacetate (DTPA)] towards mono-, di- and tri-alkyltin(IV) cations [(CH 3 )Sn 3 + , (CH 3 ) 2 Sn 2 + , (C 2 H 5 ) 2 Sn 2 + , (CH 3 ) 3 Sn + or (C 2 H 5 ) 3 Sn + ] was studied, in aqueous solutions, by ISE-H + potentiometry, at I = 0.1 mol L − 1 (NaCl) and at T = 298.15 K. In all the systems R x Sn (4 − x)+ − APC (R = CH 3 or C 2 H 5 ) a strong 1:1 species is formed together with protonated, hydroxo and dinuclear complexes. The valu…
Acid−Base Properties of Synthetic and Natural Polyelectrolytes: Experimental Results and Models for the Dependence on Different Aqueous Media
Protonation constants of several natural and synthetic humates and fulvates were determined by ISE-H+ potentiometry in different ionic media (alkali metal halides and tetraethylammonium iodide) at different ionic strengths and T ) 298.15 K. Experimental data obtained in previous studies of different synthetic (polyacrylates, polymethacrylates, polyacrylate-co-maleate) and naturally occurring (alginate, humic substances) polycarboxylates were also taken into account in the general analysis of acid-base properties of polyelectrolytes. Protonation constants were expressed as a function of the dissociation degree (R) using three models, namely, a simple linear model, the Ho¨gfeldt three-paramet…
Protonation constants and association of polycarboxylic ligands with the major components of seawater
Apparent protonation constants, log βjH*, of 11 carboxylic acids were determined potentiometrically ([H+]-glass electrode) in artificial seawater containing six of the major components (Na+, K+, Mg2+, Ca2+, Cl-, and SO42-) at different salinities: S (‰) = 5, 15, 25, 35, 45. Values of log βjH* were fitted by the simple polynomial equation log βjH* = log TβjH + a1S1/2 + a2S + a3S3/2 (log TβjH = protonation constants at infinite dilution; a1, a2, a3 = empirical parameters), for mono-, di-, and tricarboxylates. For carboxylic anions with charge < −3, a better fit was obtained using the equation log βjH* = log TβjH + b1I + b0z* log(1 + b2I) (b0, b1, b2 = empirical parameters, z* = square sum of…
Modelling the dependence on medium and ionic strength of molybdate acidbase properties, and its interactions with phytate
The importance of molybdenum from a biological, environmental and technological point of view is very well known since many decades [15]. In particular, it is mainly present in aqueous solutions as molybdate (MoO42), which is the biologically active form, entering in the cells by active transport systems. Though molybdate is the major species in neutral to basic pH conditions, at lower pH it undergoes protonation and, chiefly, polymerization, even at millimolar concentration levels [2]. Consequently, the modelling of its speciation and acidbase properties is not very simple, as demonstrated by the nonhomogeneity of available literature data. In this light, our group has started a systematic…
The Effect of Metal Cations on the Aqueous Behavior of Dopamine. Thermodynamic Investigation of the Binary and Ternary Interactions with Cd2+, Cu2+ and UO22+ in NaCl at Different Ionic Strengths and Temperatures
The interactions of dopamine [2-(3,4-Dihydroxyphenyl)ethylamine, (Dop−)] with cadmium(II), copper(II) and uranyl(VI) were studied in NaCl(aq) at different ionic strengths (0 ≤ I/mol dm−3 ≤ 1.0) and temperatures (288.15 ≤ T/K ≤ 318.15). From the elaboration of the experimental data, it was found that the speciation models are featured by species of different stoichiometry and stability. In particular for cadmium, the formation of only MLH, ML and ML2 (M = Cd2+; L = dopamine) species was obtained. For uranyl(VI) (UO22+), the speciation scheme is influenced by the use of UO2(acetate)2 salt as a chemical; in this case, the formation of ML2, MLOH and the ternary MLAc (Ac = acetate) species in a …
Binding of acrylic and sulphonic polyanions by open-chain polyammonium cations
Abstract The interactions between some acrylic and sulphonic polyanions and some protonated amines (diamines NH 2 -(CH 2 ) x -NH 2 , x =2,…,10; linear tri-, tetra-, penta- and hexa-amines) were studied potentiometrically in aqueous solution, at 25°C. For both types of polyanions AL 2 H i (L − , monomer of polyanion, A, amine) species are formed, with i =1,…, n ( n =number of amino groups in the amine). The stability of these species is strictly dependent on the polyammonium cation charge, and fairly independent of the type of amine (in diamine species maximum stability is observed for x =4, 5). Acrylic and sulphonic polyanion complexes are considerably stronger than analogous species formed…
Interaction of Alkyltin(IV) Compounds with Ligands of Interest in the Speciation of Natural fluids: Complexes of (CH3)2Sn2+ with Carboxylates
Complex formation by (CH3)2Sn 2+ with acetate (ac), malonate (mal), 1,2,3-propanetricarboxylate (tricarballylate, tca) and 1,2,3,4-butanetetracarboxylate (btc) ligands in aqueous solution is reported. The study has been performed by potentiometry ([H + ]‐glass electrode) at T = 25 °C, and in the 0 < I < 1 mol dm 2 3 ionic strength range. In order to evaluate the salt effects on the formation constants of the complex species, and to contribute to the definition of the chemical speciation of diorganotin(IV) compounds in natural waters where carboxylic ligands are naturally present, interactions of NaCl (which is the major component of all natural fluids), with the components of the systems un…
Sequestration of (CH3)Hg+ by amino‐polycarboxylic chelating agents
Abstract The speciation of mono-methylmercury(II) cation (MeHg+) in the presence of Nitrilotriacetate (NTA), Ethylenediamine-N,N,N′,N′-tetraacetate (EDTA), diethylenetriamine-N,N,N′,N″,N″-pentaacetate (DTPA) and (S,S)- Ethylenediamine-N,N′-disuccinic acid (S,S-EDDS) was investigated at I = 0.1 mol L− 1 (NaCl) with the aim to assess a trend of sequestering capacity of the amino‐polycarboxylic (APCs) ligand class towards this cation in aqueous solution. The results obtained gave evidence for the formation of a mononuclear [MeHg(APC)] complex species, differently protonated MeHg(HiL) species (i = 1 to 3, depending on the APC considered), a mixed hydroxo species [MeHg(APC)(OH)] and a binuclear …
Sequestration of biogenic amines by alginic and fulvic acids.
The interaction of natural (alginic and fulvic acids) and synthetic (polyacrylic acid 2.0 kDa) polyelectrolytes with some protonated polyamines [diamines: ethylendiamine, 1,4-diaminobutane (or putrescine), 1,5-diaminopentane (or cadaverine); triamines: N-(3-aminopropyl)-1,4diaminobutane (or spermidine), diethylenetriamine; tetramine: N.N'-bis(3-aminopropyl)-1,4-diaminobutane (or spermine); pentamine: tetraethylene-pentamine; hexamine: pentaethylenehexamine] was studied at T=25 degrees C by potentiometry and calorimetry. Measurements were performed without supporting electrolyte, in order to avoid interference, and results were reported at I=0 mol L(-1). For all the systems, the formation of…
Binding of fluoride and carbonate by open chain polyammonium cations
The formation of open chain polyammonium cation-fluoride and -carbonate complexes was studied by potentiometric and calorimetric techniques at t=25 degrees C. Several species of H(i)AL (A=amine; L=F(-), CO(3)(2-)) are formed in both systems with a mean stability log K=1.0zeta (zeta=|z(anion)xz(cation)|) and log K=2.0zeta for fluoride and carbonate, respectively. The comparison with analogous systems (chloride and acetate for fluoride and hydrogenphosphate, sulfate and malonate for carbonate) showed that fluoride and carbonate form the most stable species with open chain polyammonium cations, among low molecular weight anions. The N-alkyl substitution does not play negligible role in the sta…
Speciation of organotin compounds in NaCl aqueous solution: interaction of mono-, di- and tri-organotin(IV) cations with nucleotide 5′ monophosphates
Formation constants for complex species of mono-, di- and tri-alkyltin(IV) cations with some nucleotide 5'-monophosphates (AMP, UMP, IMP and GMP) are reported, at T=25°C and at I = 0.16 mol 1 -1 (NaCI). The investigation was performed in the light of speciation of organometallic compounds in natural fluids in the presence of nucleotides whose biological importance is well recognized. The simple and mixed hydrolytic complex species formed in all the systems investigated in the pH range 3-9 are (L = nucleotide; M = organotin cation R x Sn (4-x)+ , with x = 1 to 3): ML + , ML(OH)° and ML(OH) 2 - for the system CH 3 Sn 3+ -L (L = AMP, IMP, UMP); ML 0 and ML(OH)-for the system (C 2 H 5 ) 2 Sn 2+…
Hydrolysis of dioxouranium(VI): a calorimetric study in NaClaq and NaClO4aq, at 25°C
Abstract We report the results of a calorimetric study on the hydrolysis of UO 2 2+ in different ionic media (NaClO 4 aq , NaCl aq ) at 25 °C. Experiments in NaCl were performed at different ionic strength, at I ≤1 mol l −1 . The species considered in both ionic media were UO 2 (OH) + , (UO 2 ) 2 (OH) 2 2+ and (UO 2 ) 3 (OH) 5 + , and in addition (UO 2 ) 3 (OH) 4 2+ and (UO 2 ) 3 (OH) 7 − in NaCl aq . The dependence on ionic strength of enthalpy changes in NaCl aq was expressed by the simple linear equation Δ H pq =Δ H ° pq + aI 1/2 ( a , empirical parameter). Comparison with literature findings is given and some recommended values are reported.
Polyacrylates in aqueous solution. The dependence of protonation on molecular weight, ionic medium and ionic strength
Abstract The protonation constants of polyacrylates with different molecular weights ( W =2000–750 000 Da) were determined in different ionic media (alkali metal chlorides and nitrates, tetraalkylammonium chlorides), at 25 °C, by potentiometric measurements (H + –glass electrode). Literature data were also considered. Different models used to analyse protonation data were compared: the first was the modified Henderson–Hasselbalch two-parameter equation, and the second was the three-parameter equation proposed by Hogfeldt. The dependence on the ionic strength of the different supporting electrolytes and all the protonation parameters involved in the two models showed the trend Et 4 N + ≫Li +…
Uranium(VI) sequestration by polyacrylic and fulvic acids in aqueous solution
Stability data on the formation of dioxouranium(VI) species with polyacrylic (PAA) and fulvic acids (FA) are reported with the aim to define quantitatively the sequestering capacity of these high molecular weight synthetic and naturally occurring ligands toward uranium(VI), in aqueous solution. Investigations were carried out at t = 25 °C in NaCl medium at different ionic strengths and in absence of supporting electrolyte for uranyl–fulvate (\( {{\text{UO}}_{2}}^{2+} \)–FA) and uranyl–polyacrylate (\( {{\text{UO}}_{ 2}}^{ 2+ } \)–PAA, PAA MW 2 kDa) systems, respectively. The experimental data are consistent with the following speciation models for the two systems investigated: (i) UO2(FA1),…
Hydrolysis of Monomethyl-, Dimethyl-, and Trimethyltin(IV) Cations in Fairly Concentrated Aqueous Solutions at I = 1 mol L-1 (NaNO3) and T = 298.15 K. Evidence for the Predominance of Polynuclear Species
The hydrolysis of methyltin(IV) cations at fairly high concentrations was investigated to evaluate the formation of polynuclear species in aqueous solution. The hydrolysis of monomethyltin(IV), dimethyltin(IV), and trimethyltin(IV) was studied by potentiometry at T = 298.15 K and at I = 1 mol L-1 in NaNO3 aqueous solutions. The results obtained gave evidence for the formation of the following polynuclear species, in addition to the mononuclear species already reported, which were also considered in the models proposed for the three systems investigated: [(CH3)Sn(OH)3]0, [(CH3)Sn(OH)4]-, [((CH3)Sn)2(OH)4]2+, [((CH3)Sn)2(OH)5]+, [((CH3)Sn)2(OH)7]-, [((CH3)Sn)3(OH)5]4+, [((CH3)Sn)3(OH)7]2þ, [(…
Speciation of chitosan with low and high molecular weight carboxylates in aqueous solution
Quantitative data on the speciation of chitosan (310 kDa) with low and high molecular weight carboxylates in aqueous solution are reported. The following carboxylic ligands were considered: monocarboxylate (butyrate); dicarboxylates (malonate, succinate, azelate); tricarboxylate (1,2,3-propa- netricarboxylate); tetracarboxylate (1,2,3,4-butanetetracarboxylate); polyacrylates (2.0 and 20 kDa); polymethacrylate (5.4 kDa). The investigation was performed by potentiometry at t 1/4 25 C, at low ionic strength (without addition of supporting electrolyte) and at I 1/4 0:15 mol L 1 (NaCl). For all the systems the formation of (chitosan)LHi species was found (L 1/4 carboxylic ligand; i 1/4 1 to 4 de…
Speciation of Low Molecular Weight Carboxylic Ligands in Natural Fluids: Protonation Constants and Association with Major Components of Seawater of Oxydiacetic and Citric Acids
Abstract The interaction of oxydiacetate and citrate with the major components of seawater has been studied potentiometrically, at 25°C, in an artificial seawater (containing Na+, K+, Ca2+, Mg2+, Cl− and SO42−) at different salinities (5–45‰). Apparent protonation constants were calculated, from potentiometric data, and estimated, using an appropriate complex formation model. Formation constants of complexes formed by oxydiacetate and citrate and the cation of seawater (the inorganic content of seawater being considered as a single 1 : 1 salt) were determined. The single salt approximation for the major inorganic components of seawater, which is a good tool in estimating the mean strength o…
Interaction of methyltin(IV) compounds with carboxylate ligands. Part 2: Formation thermodynamic parameters, predictive relationships and sequestering ability.
Thermodynamic data of mono-, di- and tri-methyltin(IV)-carboxylate complexes (acetate, malonate, succinate, oxydiacetate, diethylenetrioxydiacetate, malate, citrate, 1,2,3-tricarballylate, 1,2,3,4-butanetetracarboxylate, 1,2,3,4,5,6-benzenehexacarboxylate) in aqueous solution are reported at t = 25 °C and I = 0 mol l−1. Thermodynamic parameters obtained were analysed to formulate empirical predictive relationships as a function of different parameters, such as the number of carboxylate groups of the ligand and the charge of the alkyltin(IV) cation. Sequestration diagrams of citrate and 1,2,3-tricarballylate towards alkyltin(IV) cations at different pH values are also reported and discussed.…
Sequestering Ability of Aminopolycarboxylic (APCs) and Aminopolyphosphonic (APPs) Ligands Toward Palladium(II) in Aqueous Solution
The binding capacity of three aminopolycarboxylates [nitrilotriacetic acid (NTA), ethylene-glycol-bis(2-aminoethyl ether)-N,N,N,N-tetraacetic acid (EGTA), and diethylenetriamine-N,N,N,NN-pentaacetic acid (DTPA)] and two aminopolyphosphonates {(1-hydroxyethane-1,1-diyl)bis(phosphonic acid) (HEDP) and [[(phosphonomethyl)imino]bis[2,1-ethanediylnitrilobis(methylene)]] tetrakis-phosphonic acid (DTPP)} toward palladium(II) ion was studied by potentiometric and spectrophotometric titrations at different temperatures (283.15 ≤ T/K ≤ 318.15) and ionic strengths (0.1 ≤ I/mol·dm -3 ≤ 1.0) in NaClO4. The hydrolysis of Pd2+ and the protonation of ligands were always taken into account in the speciation…
On the Complexation of Cu(II) and Cd(II) With Polycarboxyl Ligands. Potentiometric Studies With ISE-H+, ISE-Cu2+, and ISE-Cd2+
The interaction of Cu2+ and Cd2+ ions with polyacrylates (PAA, 2 kDa and 100 kDa), polymetacrylate(PMA, 5.4 kDa), and alginate (AA, 70 kDa to 100 kDa) was studied by potentiometry, using ISE-Cu2+, ISE-Cd2+, and ISE-H+ electrodes. The investigations were performed in NaNO3 aqueous solutions, in the ionic strength range 0.10 e I (mol ·L-1) e 0.75, at T ) 298.15 K. The “diprotic-like model” was used to explain the acid-base behavior of the polycarboxylates under investigation (for this model, the monomeric unit of the polyelectrolyte is considered as a dicarboxylate). The results give evidence for the formation of the ML species in all the systems investigated. In addition, the MLH species was…
SALMO and S3M: A Saliva Model and a Single Saliva Salt Model for Equilibrium Studies.
A model of synthetic saliva (SALMO, SALiva MOdel) is proposed for its use as standard medium inin vitroequilibrium and speciation studies of real saliva. The concentrations come out from the literature analysis of the composition of both real saliva and synthetic saliva. The chief interactions of main inorganic components of saliva, as well as urea and amino acids, are taken into account on the basis of a complex formation model, which also considers the dependence of the stability constants of these species on ionic strength and temperature. These last features allow the modelling of the speciation of saliva in different physiological conditions deriving from processes like dilution, pH, a…
Speciation of low molecular weight ligands in natural fluids: protonation constants and association of open chain polyamines with the major components of seawater.
Abstract The interaction of five open chain polyamines (ethylenediamine (en), diethylenetriamine (dien), trietylenetetramine (trien), tetraethylenepentamine (tetren), spermine (sper)) with the major components of seawater was studied potentiometrically at 25°C, in an artificial seawater (containing Na+, K+, Mg2+, Ca2+, Cl− and SO42−) at different salinities (5–45‰). Potentiometric data were interpreted in terms of both the apparent protonation constants of polyamines and the formation constants of complexes formed by unprotonated or protonated amines and the cation and the anion of seawater (the inorganic content of seawater being considered as a single 1:1 salt). Some empirical relationshi…
Speciation of Organic Matter in Natural Waters-interaction of polyacrylates and polymethacrylates with major cation components of seawater
Abstract The speciation of some high molecular weight polycarboxylates was studied in different ionic media. Polyacrylates here investigated ( W =2.0, 5.1 and 20.0 kDa) form weak species with alkali metal cations ( K =10 2 mol l −1 , t =25 °C, I =0 mol l −1 ) and quite stable complexes with alkaline earth metal cations ( K >10 6 mol l −1 , t =25 °C, I =0 mol l −1 ). Results are reported from experiments performed in a multicomponent electrolyte solution simulating the major composition of seawater (artificial seawater). Protonation constants in this medium are expressed as a polynomial function of S 1/2 ( S =salinity) and the sharp lowering with respect to values obtained in non-interacting…
Protonation of Carbonate in Aqueous Tetraalkylammonium Salts at 25°C.
Protonation constants of carbonate were determined in tetramethylammonium chloride (Me4NClaq 0.1≤I/mol kg−1 ≤4) and tetraethylammonium iodide (Et4NIaq 0.1≤I/mol kg−1 ≤1) by potentiometric ([H+]-glass electrode) measurements. Dependence of protonation constants on ionic strength was taken into account by modified specific ion interaction theory (SIT) and by Pitzer models. Literature data on the protonation of carbonate in NaClaq (0.1≤I/mol kg−1 ≤6) were also critically analysed. Both protonation constants of carbonate follow the trend Et4NI>Me4NCl > NaCl. An ion pair formation model designed to take into account the different protonation behaviours of carbonate in different supporting electr…
The interaction of amino acids with the major constituents of natural waters at different ionic strengths
Abstract The interaction of amino acids with the major constituents of natural waters has been studied potentiometrically by determining protonation constants at different ionic strengths (e.g., I ≤5.6 mol (kg H 2 O) −1 (NaCl)) and in artificial seawater (containing Na + , K + , Ca 2+ , Mg 2+ , Cl − and SO 4 2− ) at different salinities. For glycine determinations in mixed NaCl–MgCl 2 , electrolyte solutions were also performed. The data included in this work, together with some already published, make it possible to calculate parameters for dependence on ionic strength using different models, i.e. an extended Debye–Huckel type equation and Pitzer equations. The results can be interpreted b…
Composition, distribution, and sources of polycyclic aromatic hydrocarbons in sediments of the gulf of Milazzo (Mediterranean Sea, Italy)
This article describes the characterization of Polycyclic Aromatic Hydrocarbons (PAHs) in sediments of Milazzo Gulf (Italy) located in front of an oil refinery and a power plant. The investigated area is characterized by urban and industrial activities. The sixteen PAHs identified by the USEPA, as requiring priority monitoring, and other non USEPA listed PAHs, namely perylene and some methyl derivatives, were investigated The total PAHs concentrations, expressed as ∑ 19 PAH ranges from 5.6–7402 μg/Kg d.w., with a mean value of 492 μg/Kg d.w. The concentrations of PAHs found in 64 out of 67 samples were lower than the effect range low (ERL = 2460 μg/Kg) concentration, while the remaining sam…
Thermodynamic Parameters for the Protonation of Poly(allylamine) in concentrated LiCl(aq) and NaCl(aq)
The acid-base properties of poly(allylamine) (MW ) 15 kDa) were determined by potentiometry and calorimetry in aqueous solutions at t ) 25 °C. Potentiometric measurements were carried out in a wide range of ionic strengths (0.1 e I/molâL-1 e 5.0) in NaCl(aq) and LiCl(aq), while enthalpy changes for the protonation of poly(allylamine) were determined by calorimetry in the same ionic strength range but only in NaCl(aq). Analysis of the experimental data was carried out using two different models: the first based on a modified Henderson-Hasselbalch two parameter equation and the second on the three parameter equation proposed by Ho¨gfeldt. Protonation constants are given for both models and io…
Chemical speciation of organic matter in natural waters. Interaction of nucleotide 5′ mono-, di- and triphosphates with major components of seawater
AbstractThe interactions of nucleotide 5’ mono-, di- and triphosphates in a multicomponent ionic medium simulating the macro-composition of seawater (Na+, K+, Ca2+, Mg2+, Cl-, SO42-, Synthetic Sea Water, SSW) have been investigated at different ionic strengths and at T= 25°C. A chemical speciation model, according to which all the internal interactions between the components of the ionic medium are taken into account, was applied to determine the effective formation constants of species in the nucleotide-seawater system. The results were compared to protonation parameters calculated from single electrolyte systems. A simpler model (SSW considered as a single salt BA, with Bz+ and Az-), repr…
8-Hydroxyquinoline-2-Carboxylic Acid as Possible Molybdophore: A Multi-Technique Approach to Define Its Chemical Speciation, Coordination and Sequestering Ability in Aqueous Solution.
8-hydroxyquinoline-2-carboxylic acid (8-HQA) has been found in high concentrations (0.5&ndash
Polycarboxylic acids in sea water: acid–base properties, solubilities, activity coefficients, and complex formation constants at different salinities
This paper reports the results of the investigations carried out in synthetic sea water at different salinities for different classes of polycarboxylic acids. The investigations can be summarized as follows: (a) Determination of the protonation constants in such multicomponent solution in a salinity range 15 ≤ S ≤ 45, at t = 25 °C, for the linear dicarboxylic acids HOOC-(CH2) n –COOH (0 ≤ n ≤ 8), and aromatic polycarboxylic acids (o-phthalic and 1,2,4-benzenetricarboxylic acids). For malonic, succinic, 1,2,3-benzenetricarboxylic, and 1,2,3,4-benzenetetracarboxylic acids, investigations were also carried out at t = 10 and 37 °C; (b) Determination of the total and intrinsic solubility (S T an…
Speciation of tin(II) in aqueous solution: thermodynamic and spectroscopic study of simple and mixed hydroxocarboxylate complexes
This contribution reports the results of potentiometric and Mossbauer investigations on the formation, stability, and structure of binary and ternary mono- and binuclear complexes of Sn2+ with three hydroxocarboxylic ligands (namely L = tartrate, malate, and citrate) and chloride at T = 298.15 K in different ionic media and ionic strengths (0.15 and 1.00 mol dm−3 in NaCl(aq) and 1.00 mol dm−3 in NaNO3(aq)). The stability constants of various simple Sn i H j L (2+−) and mixed Sn i H j L k Cl (2+−−) species obtained in the different experimental conditions are reported, and various speciation diagrams of the simple and mixed systems are shown in different conditions. The sequestering ability …
Enhancement of Hydrolysis through the Formation of Mixed Heterometal Species: Al3+/CH3Sn3+ Mixtures
ABSTRACT: The hydrolysis of mixed-metal cations (Al3+/CH3Sn3+) was studied in aqueous solutions of NaNO3, at I = 1.00 ± 0.05 mol·dm−3 and T = 298.15 K, by potentiometric technique. Several hydrolytic mixed species are formed in this mixed system, namely, Alp(CH3Sn)q(OH)r with (p, q, r) = (1, 1, 4), (1, 1, 5), (1, 1, 6), (2, 1, 4), (1, 2, 5), (1, 4, 11), (1, 3, 8), and (7, 6, 32). The stability of these species, expressed by the equilibrium: pAl3+ + qCH3Sn3+ + rOH− = Alp(CH3Sn)q(OH)r 3(p+q)−r, βpqr OH, can be modeled by the empirical relationship: log βpqr OH = −3.34 + 2.67p + 9.23(q + r). By using the equilibrium constant Xpqr relative to the formation reaction: pAl(p+q)(OH)r + q(CH3Sn)(p+q…
Protonation thermodynamics of 2,2'-bipyridyl in aqueous solution. Salt effects and weak complex formation
Abstract Protonation constants of 2,2'-bipyridyl (bipy) have been determined potentiometrically, using (H + )-glass electrode, in different aqueous media (alkali and alkaline earth chlorides, tetramethylammonium chloride and tetramethylammonium iodide) at different temperatures and ionic strengths. The differences in log K H values are explained using a complex formation model. Formation thermodynamic parameters are given.