6533b86dfe1ef96bd12c9502

RESEARCH PRODUCT

Chemical speciation of organic matter in natural waters. Interaction of nucleotide 5′ mono-, di- and triphosphates with major components of seawater

Silvio SammartanoAntonio GianguzzaDaniela PiazzeseFrancesco CreaConcetta De Stefano

subject

chemistry.chemical_classificationChemical Health and SafetyHealth Toxicology and MutagenesisInorganic chemistrySalt (chemistry)Ionic bondingProtonationElectrolytenucleotideToxicologyorganic natural matterIonspeciationchemistryStability constants of complexesspeciation; nucleotide; seawater; organic natural matterQualitative inorganic analysisSeawaterChemical speciation of organic matter. Complex formation. Natural waters. Nucleotidesseawater

description

AbstractThe interactions of nucleotide 5’ mono-, di- and triphosphates in a multicomponent ionic medium simulating the macro-composition of seawater (Na+, K+, Ca2+, Mg2+, Cl-, SO42-, Synthetic Sea Water, SSW) have been investigated at different ionic strengths and at T= 25°C. A chemical speciation model, according to which all the internal interactions between the components of the ionic medium are taken into account, was applied to determine the effective formation constants of species in the nucleotide-seawater system. The results were compared to protonation parameters calculated from single electrolyte systems. A simpler model (SSW considered as a single salt BA, with Bz+ and Az-), representative of the cation (Na+, K+, Ca2+, Mg2+) and anion (Cl-, SO42-) macro-components of seawater respectively, was also used to calculate the overall complexing ability of the seawater salt towards all the systems here investigated.

http://www.scopus.com/inward/record.url?eid=2-s2.0-2642546757&partnerID=MN8TOARS