6533b854fe1ef96bd12ae0a6

RESEARCH PRODUCT

Uranium(VI) sequestration by polyacrylic and fulvic acids in aqueous solution

Alberto PettignanoAntonio GianguzzaSilvio SammartanoDaniela PiazzeseConcetta De Stefano

subject

Aqueous solutionSupporting electrolyteLigandHealth Toxicology and MutagenesisDioxouranium(VI) cation Uranium sequestration Uranyl–polycarboxylate interactions Fulvic acid Polyacrylic acid Metal complexes in aqueous solutionPolyacrylic acidPublic Health Environmental and Occupational Healthchemistry.chemical_elementIonic bondingUraniumUranylPollutionAnalytical ChemistryIonchemistry.chemical_compoundNuclear Energy and EngineeringchemistryPhysical chemistryRadiology Nuclear Medicine and imagingSettore CHIM/01 - Chimica AnaliticaSpectroscopyNuclear chemistry

description

Stability data on the formation of dioxouranium(VI) species with polyacrylic (PAA) and fulvic acids (FA) are reported with the aim to define quantitatively the sequestering capacity of these high molecular weight synthetic and naturally occurring ligands toward uranium(VI), in aqueous solution. Investigations were carried out at t = 25 °C in NaCl medium at different ionic strengths and in absence of supporting electrolyte for uranyl–fulvate (\( {{\text{UO}}_{2}}^{2+} \)–FA) and uranyl–polyacrylate (\( {{\text{UO}}_{ 2}}^{ 2+ } \)–PAA, PAA MW 2 kDa) systems, respectively. The experimental data are consistent with the following speciation models for the two systems investigated: (i) UO2(FA1), UO2(FA1)(FA2), UO2(FA1)(FA2)(H) for \( {{\text{UO}}_{ 2}}^{ 2+ } \)–fulvate (where FA1 and FA2 represent the carboxylic and phenolic fractions, respectively, both present in the structure of FA), and (ii) UO2(PAA), UO2(PAA)(OH), (UO2)2(PAA)(OH)2 for \( {{\text{UO}}_{ 2}}^{ 2+ } \)–polyacrylate. By using the stability data obtained for all the complex species formed, the uranium(VI) sequestration by PAA and FA was expressed by the pL50 parameter [i.e. the −log(total ligand concentration) necessary to bind 50% of uranyl ion] at different pH values. A comparison between pL50 values of FA and PAA and some low molecular weight carboxylic ligands toward uranyl ion is also given.

10.1007/s10967-011-1160-5http://hdl.handle.net/10447/55967