Simulation of vapor-liquid coexistence in finite volumes: a method to compute the surface free energy of droplets.
When a fluid at a constant density $\ensuremath{\rho}$ in between the densities of coexisting vapor $({\ensuremath{\rho}}_{\text{v}})$ and liquid $({\ensuremath{\rho}}_{\ensuremath{\ell}})$ at temperatures below criticality is studied in a (cubic) box of finite linear dimension $L$, phase separation occurs in this finite volume, provided $L$ is large enough. For a range of densities, one can observe a liquid droplet (at density ${\ensuremath{\rho}}_{\ensuremath{\ell}}^{\ensuremath{'}}$ slightly exceeding ${\ensuremath{\rho}}_{\ensuremath{\ell}}$) coexisting in stable thermal equilibrium with surrounding vapor (with density ${\ensuremath{\rho}}_{\text{v}}^{\ensuremath{'}}g{\ensuremath{\rho}}…