0000000000519411

AUTHOR

Katia Caamaño

0000-0002-4291-4930

Exploiting the Redox Activity of MIL-100(Fe) Carrier Enables Prolonged Carvacrol Antimicrobial Activity

The design of efficient food contact materials that maintain optimal levels of food safety is of paramount relevance to reduce the increasing number of foodborne illnesses. In this work, we develop a smart composite metal-organic framework (MOF)-based material that fosters a unique prolonged antibacterial activity. The composite is obtained by entrapping a natural food preserving molecule, carvacrol, into a mesoporous MIL-100(Fe) material following a direct and biocompatible impregnation method, and obtaining particularly high payloads. By exploiting the intrinsic redox nature of the MIL-100(Fe) material, it is possible to achieve a prolonged activity against Escherichia coli and Listeria i…

research product

A thermally/chemically robust and easily regenerable anilato-based ultramicroporous 3D MOF for CO 2 uptake and separation

The combination of the properly designed novel organic linker, 3,6-N-ditriazoyil-2,5-dihydroxy-1,4-benzoquinone (trz2An), with CoII ions results in a 3D ultramicroporous MOF with high CO2 uptake capacity and separation efficiency, with particular attention to CO2/N2 and CO2/CH4 gas mixtures. This material consists of 1D chains of octahedrally coordinated CoII ions linked through the anilato ligands in the equatorial positions and to the triazole substituents from two neighbouring chains in the two axial positions. This leads to a 3D microporous structure with voids with an affinity for CO2 molecules and channels that enable the selective entrance of CO2 but not of molecules with larger kine…

research product

Exploiting redox activity of MIL-100(Fe) carrier enables carvacrol prolonged antimicrobial activity

The design of efficient food contact materials that maintain optimal levels of food safety is of paramount relevance to reduce the increasing foodborne illnesses. In this work, we develop a smart composite MOF-based material that fosters a unique prolonged antibacterial activity. The composite is obtained by entrapping a natural preserving food molecule, carvacrol, into the mesoporous MIL-100(Fe) material following a direct and biocompatible impregnation method and obtaining particularly high payloads. By exploiting the intrinsic redox nature of MIL-100(Fe) material it is possible to achieve a prolonged activity against E. coli bacteria due to a triggered two-step carvacrol release of films…

research product