0000000000520325

AUTHOR

Ivan Esteban

showing 5 related works from this author

Coherent elastic neutrino-nucleus scattering at the European Spallation Source

2020

The European Spallation Source (ESS), presently well on its way to completion, will soon provide the most intense neutron beams for multi-disciplinary science. Fortuitously, it will also generate the largest pulsed neutrino flux suitable for the detection of Coherent Elastic Neutrino-Nucleus Scattering (CE$\nu$NS), a process recently measured for the first time at ORNL's Spallation Neutron Source. We describe innovative detector technologies maximally able to profit from the order-of-magnitude increase in neutrino flux provided by the ESS, along with their sensitivity to a rich particle physics phenomenology accessible through high-statistics, precision CE$\nu$NS measurements.

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFluxFOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesElectroweak interactionlcsh:Nuclear and particle physics. Atomic energy. RadioactivityNeutronSpallationNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysics010308 nuclear & particles physicsScatteringElectroweak interactionDetectorInstrumentation and Detectors (physics.ins-det)Neutrino Detectors and Telescopes (experiments)High Energy Physics - PhenomenologyBeyond Standard Modellcsh:QC770-798Physics::Accelerator PhysicsNeutrinoSpallation Neutron Source
researchProduct

Decaying sterile neutrinos and the short baseline oscillation anomalies

2019

The MiniBooNE experiment has observed a significant excess of electron neutrinos in a muon neutrino beam at source-detector distances too short to be compatible with standard neutrino oscillations. The most straightforward explanation for this signal in terms of oscillations between Standard Model neutrinos and a new, sterile, neutrino, is disfavored by null results from experiments looking for muon neutrino disappearance. Here, we discuss the possibility that MiniBooNE data are instead explained by a sterile neutrino that decays quickly back into active neutrinos plus a light boson. The flavor composition of the secondary neutrinos is determined by the sterile neutrino mixing angles, and w…

Sterile neutrinoParticle physicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesElectron7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentMiniBooNEHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesMuon neutrino010306 general physicsNeutrino oscillationParticle Physics - PhenomenologyBosonPhysicshep-ex010308 nuclear & particles physicsOscillationHigh Energy Physics::Phenomenologyhep-ph3. Good healthHigh Energy Physics - PhenomenologyHigh Energy Physics::ExperimentNeutrinoParticle Physics - ExperimentPhysical Review D
researchProduct

Improved global fit to Non-Standard neutrino Interactions using COHERENT energy and timing data

2020

We perform a global fit to neutrino oscillation and coherent neutrino-nucleus scattering data, using both timing and energy information from the COHERENT experiment. The results are used to set model-independent bounds on four-fermion effective operators inducing non-standard neutral-current neutrino interactions. We quantify the allowed ranges for their Wilson coefficients, as well as the status of the LMA-D solution, for a wide class of new physics models with arbitrary ratios between the strength of the operators involving up and down quarks. Our results are presented for the COHERENT experiment alone, as well as in combination with the global data from oscillation experiments. We also q…

QuarkNuclear and High Energy PhysicsParticle physicsPhysics beyond the Standard ModelFOS: Physical sciences7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. RadioactivityNeutrino Physics010306 general physicsNeutrino oscillationPhysics010308 nuclear & particles physicsScatteringOscillationForm factor (quantum field theory)High Energy Physics - PhenomenologyBeyond Standard Modellcsh:QC770-798Solar and Atmospheric NeutrinosNeutrinoEnergy (signal processing)
researchProduct

Determining the nuclear neutron distribution from Coherent Elastic neutrino-Nucleus Scattering: current results and future prospects

2020

Coherent Elastic neutrino-Nucleus Scattering (CEνNS), a process recently measured for the first time at ORNL’s Spallation Neutron Source, is directly sensitive to the weak form factor of the nucleus. The European Spallation Source (ESS), presently under construction, will generate the most intense pulsed neutrino flux suitable for the detection of CEνNS. In this paper we quantify its potential to determine the root mean square radius of the point-neutron distribution, for a variety of target nuclei and a suite of detectors. To put our results in context we also derive, for the first time, a constraint on this parameter from the analysis of the energy and timing data of the CsI detector at t…

Nuclear and High Energy PhysicsField theory (Physics)Nuclear TheoryPhysics::Instrumentation and DetectorsFOS: Physical sciencesContext (language use)01 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsRoot mean squareNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutronSpallationNeutrino Physicslcsh:Nuclear and particle physics. Atomic energy. RadioactivityNeutrinsNuclear Experiment (nucl-ex)Neutrinos010306 general physicsNuclear ExperimentNuclear ExperimentPhysics010308 nuclear & particles physicsScatteringDetectorTeoria de camps (Física)Effective Field TheoriesHigh Energy Physics - Phenomenologylcsh:QC770-798NeutrinoSpallation Neutron Source
researchProduct

Looking at the axionic dark sector with ANITA

2020

The ANITA experiment has recently observed two anomalous events emerging from well below the horizon. Even though they are consistent with tau cascades, a high energy Standard Model or Beyond the Standard Model explanation is challenging and in tension with other experiments. We study under which conditions the reflection of generic radio pulses can reproduce these signals. We propose that these pulses can be resonantly produced in the ionosphere via axion-photon conversion. This naturally explains the direction and polarization of the events and avoids other experimental bounds.

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPhysics and Astronomy (miscellaneous)010308 nuclear & particles physicsPhysics beyond the Standard ModelFOS: Physical scienceslcsh:AstrophysicsPolarization (waves)01 natural sciencesPartícules (Física nuclear)High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Quantum electrodynamicslcsh:QB460-4660103 physical scienceslcsh:QC770-798lcsh:Nuclear and particle physics. Atomic energy. RadioactivityIonosphereAstrophysics - High Energy Astrophysical Phenomena010306 general physicsEngineering (miscellaneous)Astronomia ObservacionsThe European Physical Journal C
researchProduct