0000000000520629
AUTHOR
Hartmut Michel
Expression, purification, crystallization and preliminary X-ray analysis of strictosidine glucosidase, an enzyme initiating biosynthetic pathways to a unique diversity of indole alkaloid skeletons
Abstract Strictosidine β- d -glucosidase, a plant enzyme initiating biosynthetic pathways to about 2000 monoterpenoid indole alkaloids with an extremely large number of various carbon skeletons, has been functionally expressed in Escherichia coli and purified to homogeneity in mg scale. Crystals suitable for X-ray analysis were found by robot-mediated screening. Using the hanging-drop technique, optimum conditions were 0.3 M ammonium sulfate, 0.1 M sodium acetate, pH 4.6 and PEG 4000 (10%) as precipitant buffer. The crystals of strictosidine glucosidase belong to the space group P 42 1 2 with unit cell dimensions of a =157.63, c =103.59 A and diffract X-rays to 2.48-A resolution.
Crystallization and preliminary X-ray analysis of native and selenomethionyl vinorine synthase from Rauvolfia serpentina.
Vinorine synthase (VS) is a central enzyme of the biosynthesis of the antiarrhythmic drug ajmaline and is a member of the BAHD superfamily of acyltransferases. So far, no three-dimensional structure with significant sequence homology with VS is known. Crystals of VS and selenomethionyl-labelled VS from the medicinal plant Rauvolfia serpentina have been obtained by the hanging-drop technique at 305 K with ammonium sulfate and PEG 400 as precipitants. VS crystals diffract to 2.8 Å and belong to space group P212121, with unit-cell parameters a = 82.3, b = 89.6, c = 136.2 Å. The selenomethionyl VS crystal was nearly isomorphous with the VS crystal.
Crystallization and preliminary X-ray crystallographic analysis of strictosidine synthase from Rauvolfia: the first member of a novel enzyme family.
Strictosidine synthase is a central enzyme involved in the biosynthesis of almost all plant monoterpenoid indole alkaloids. Strictosidine synthase from Rauvolfia serpentina was heterologously expressed in Escherichia coli. Crystals of the purified recombinant enzyme have been obtained by the hanging-drop technique at 303 K with potassium sodium tartrate tetrahydrate as precipitant. The crystals belong to the space group R3 with cell dimensions of a=b=150.3 A and c=122.4 A. Under cryoconditions (120 K), the crystals diffract to about 2.95 A.
Vinorine synthase from Rauvolfia: the first example of crystallization and preliminary X-ray diffraction analysis of an enzyme of the BAHD superfamily
Abstract Crystals of vinorine synthase (VS) from medicinal plant Rauvolfia serpentina expressed in Escherichia coli have been obtained by the hanging-drop technique at 305 K with ammonium sulfate and PEG 400 as precipitants. The enzyme is involved in the biosynthesis of the antiarrhythmic drug ajmaline and is a member of the BAHD superfamily of acyltransferases. So far, no three-dimensional structure of a member of this enzyme family is known. The crystals belong to the space group P 2 1 2 1 2 1 with cell dimensions of a =82.3 A, b =89.6 A and c =136.2 A. Under cryoconditions (120 K), a complete data set up to 2.8 A was collected at a synchrotron source.
Crystallization and preliminary X-ray analysis of strictosidine synthase and its complex with the substrate tryptamine
Strictosidine synthase (STR1) is a central enzyme that participates in the biosynthesis of almost all plant monoterpenoid indole alkaloids. After heterologous expression in Escherichia coli, crystals of STR1 and its substrate complex with tryptamine were obtained by the hanging-drop technique at 302–304 K with potassium sodium tartrate tetrahydrate as precipitant. All crystals belong to space group R3. The native STR1 crystals diffract to 2.95 Å and have unit-cell parameters a = b = 150.3, c = 122.4 Å. The tryptamine complex crystals diffract to 2.38 Å, with unit-cell parameters a = b = 147.3, c = 122.3 Å.
Mössbauer Spectroscopy on Photosynthetic Bacteria: Investigation of Reaction Centers of Rhodopseudomonas Viridis
Crystals of 57Fe enriched reaction centers have been investigated by Mossbauer spectroscopy. The cytochrome irons are in the low spin ferric state. The non-heme iron of the electron accepting side is partly ferrous high spin and partly ferrous low spin (or ferric high spin). Under the conditions of the experiment sodium ascorbate reduces only one cytochrome iron into the ferrous low spin state. Membrane bound proteins become flexible at higher temperatures than proteins with a hydrophilic surface. They are also less flexible, at least up to temperatures of about 250 K.
Mössbauer spectroscopy on the reaction center of Rhodopseudomonas viridis
Proteins called “reaction centers” (RC) can be isolated from many photosynthetic bacteria. They have one non-heme iron in a quinone acceptor region. The RC of Rhodopseudomonas viridis contains an additional tightly bound tetra-heme cytochrome c subunit. The electronic configuration of both cytochrome and the non-heme iron has been studied in the crystallized protein by Mossbauer spectroscopy at different redox potentials, pH-values, and with an addition of o-phenanthroline. At high potentials (Eh=+500mV) all heme irons are in the low spin Fe3+-state, and at low potential (Eh=−150mV) they are low spin Fe2+ with the same Mossbauer parameters for all hemes independent of pH. Redox titrations c…